A NOTE ON A PRECEDING PAPER*

BY FRANCIS REGAN

1. Introduction. In a paper \dagger by the author, the following lemma was proved.

Lemma. If X_{s} is an element of $A(p)$, the number $\left\{\sum_{q=1}^{n}(q / n) X_{s} \vee\right\}$ is a member of the set $A\left[1-(1-p)^{n}\right]$.

Then again, \ddagger the author applied a theorem due to Copeland§.
It is our purpose here to extend these two theorems to apply in the field of geometrical probability. The proof of the theorem corresponding to Copeland's follows a different procedure from that given by him. As a matter of fact, the theorem of Copeland may be proved by the method given here.
2. Extension of the Lemma. The extension is as follows.

Theorem 1. If the numbers $(q / n) x\left(E_{q}\right),(q=1,2, \cdots, n)$, are such that $x\left(E_{q}\right)=\cdot \phi_{E q}\left(P_{1}\right), \phi_{E q}\left(P_{2}\right), \cdots$, where E_{q} is the interval $0<y \leqq p_{q}$ and P_{1}, P_{2}, \cdots is a set of points admissibly ordered with respect to the function $m(E)$ (the Lebesgue measure of E) defined in $\Delta ; 0<y \leqq 1$, then (1) the number $\sum_{q=1}^{M}(q / n) x\left(E_{q}\right) \vee$ has the probability $\left[1-\prod_{q=1}^{M}\left(1-p_{q}\right)\right]$ and (2) the number $\sum_{q=1}^{M}(q / n) x\left(E_{q}\right) \vee$ is a member of the set $A\left[1-\prod_{q=1}^{M}\left(1-p_{q}\right)\right]$, where $M \leqq n$.

Proof of (1). We know that $\|$

$$
\begin{equation*}
\sim \sum_{q=1}^{M}\left(\frac{q}{n}\right) x\left(E_{q}\right) \vee=\prod_{q=1}^{M} \sim\left(\frac{q}{n}\right) x\left(E_{q}\right) \cdot . \tag{a}
\end{equation*}
$$

[^0]The numbers $\sim(q / n) x\left(E_{q}\right),(q=1,2, \cdots, M)$, are independent, since $(q / n) x\left(E_{q}\right),(q=1,2, \cdots, M)$, are independent. From (a), we obtain

$$
\sum_{q=1}^{M}\left(\frac{q}{n}\right) x\left(E_{q}\right) \vee=\sim \prod_{q=1}^{M} \sim\left(\frac{q}{n}\right) x\left(E_{q}\right)
$$

and hence we have

$$
p\left[\sum_{q=1}^{M}\left(\frac{q}{n}\right) x\left(E_{q}\right) \vee\right]=1-p\left[\prod_{q=1}^{M} \sim\left(\frac{q}{n}\right) x\left(E_{q}\right) \cdot\right]
$$

or

$$
p\left[\sum_{q=1}^{M}\left(\frac{q}{n}\right) x\left(E_{q}\right) \vee\right]=1-\prod_{q=1}^{M}\left(1-p_{q}\right)
$$

where $M \leqq n$.
Proof of (2). Since

$$
\sum_{q=1}^{M}\left(\frac{q}{n}\right) x\left(E_{q}\right) \vee=\sim \prod_{q=1}^{M} \sim\left(\frac{q}{n}\right) x\left(E_{q}\right)
$$

then

$$
\left(\frac{r_{i}}{m}\right)\left[\sum_{q=1}^{M}\left(\frac{q}{n}\right) x\left(E_{q}\right) \vee\right]=\sim \prod_{q=1}^{M} \sim\left(\frac{\left[q+\left(r_{i}-1\right) n\right]}{m n}\right) x\left(E_{q}\right)
$$

Then

$$
\begin{aligned}
& \prod_{i=1}^{k}\left(\frac{r_{i}}{m}\right)\left[\sum_{q=1}^{M}\left(\frac{q}{n}\right) x\left(E_{q}\right) \vee\right] \\
&=\prod_{i=1}^{k} \sim \prod_{q=1}^{M} \sim\left(\frac{\left[q+\left(r_{i}-1\right) n\right]}{m n}\right) x\left(E_{q}\right)
\end{aligned}
$$

The numbers r_{i} are chosen such that for every set r_{1}, r_{2}, \cdots, r_{k}, we have $0<r_{i} \leqq m$ and $r_{i} \neq r_{j}$ if $i \neq j$. The numbers $\sim\left(\left[q+\left(r_{i}-1\right) n\right] / m n\right) x\left(E_{q}\right)$ are independent. Hence the numbers $\prod_{q=1}^{M} \sim\left(\left[q+\left(r_{i}-1\right) n\right] / m n\right) x\left(E_{q}\right)$. are independent, from

[^1]which it follows that the numbers $\sim \prod_{q=1}^{M} \sim\left(\left[q+\left(r_{i}-1\right) n\right] / m n\right)$ $x\left(E_{q}\right)$. are independent. We may now conclude that
$$
p\left\{\prod_{i=1}^{k}\left(\frac{r_{i}}{m}\right)\left[\sum_{q=1}^{M}\left(\frac{q}{n}\right) x\left(E_{q}\right) \vee\right] \cdot\right\}=\left\{1-\prod_{q=1}^{M}\left(1-p_{q}\right\}^{k} .\right.
$$

Therefore, the number $\sum_{q=1}^{M}(q / n) x\left(E_{q}\right)$ is an element of $A\left[\left(1-\prod_{q=1}^{M}\left(1-p_{q}\right)\right)\right]$, where $\bar{M} \leqq n$.
3. Analog of Copeland's Theorem. In order to prove the second theorem, we shall need the following lemma.

Lemma. If the numbers $x_{1}{ }^{1}, x_{2}{ }^{1}, \cdots, x_{N_{1}}{ }^{1}, x_{1}{ }^{2}, x_{2}{ }^{2}, \cdots$, $x_{N_{2}}^{2}, \cdots, x_{1}^{k}, x_{2}^{k}, \cdots, x_{N_{k}^{k}}^{k}$ are such that $x_{j}{ }^{i} \cdot x_{j}{ }^{i}=0$, where $j \vee j^{\prime}$ and $x_{\gamma_{1}}^{1}, x_{\gamma_{2}}^{2}, \cdots, x_{r_{k}}^{k}$ are independent, it follows that the numbers $\quad\left(x_{1}^{1} \vee x_{2}^{1} \vee \cdots \vee x_{N_{1}}^{1}\right), \quad\left(x_{1}^{2} \vee x_{2}^{2} \vee \cdots \vee x_{N_{2}}^{2}\right), \cdots$, $\left(x_{1}^{k} \vee x_{k}^{k} \vee \cdots \vee x_{N k}^{k}\right)$ are independent.

By hypothesis, $x_{1}^{1}, x_{\gamma_{2}}{ }^{2}, \cdots, x_{\gamma k}^{k}$ and $x_{2}^{1}, x_{\gamma_{2}}{ }^{2}, \cdots, x_{\gamma k}^{k}$ are independent, and since $x_{1}^{1} \cdot x_{2}^{1}=0$, the numbers $x_{1}^{1} \vee x_{2}^{1{ }^{1}}$, $x_{\gamma_{2}}{ }^{2}, \cdots, x_{\gamma_{k}}{ }^{k}$ are independent.* Then the two sets of numbers $x_{1}^{1} \vee x_{2}^{1}, x_{\gamma_{2}}^{2}, \cdots, x_{\gamma_{k}}{ }^{k}$ and $x_{3}^{\frac{1}{3}}, x_{\gamma_{2}}^{2}, \cdots, x_{\gamma_{k}}^{k}$ are independent, and since $\left(x_{1}^{1} \vee x_{2}^{1}\right) \cdot x_{3}^{\frac{1}{2}}=\left(x_{1}^{1} \cdot x_{3}^{\frac{1}{3}}\right) \vee\left(x_{2}^{1} \cdot x_{\frac{1}{3}}^{1}\right)=0$, the numbers $x_{1}^{1} \bigvee x_{2}^{1} \bigvee x_{3}^{1}, x_{\gamma_{2}^{2}}^{2}, \cdots, x_{\gamma_{k}^{k}}^{k}$ are independent. In general, the numbers ($x_{1} \vee x_{2}{ }^{1} \vee \cdots \vee x_{N_{1}}{ }^{1}$), $x_{\gamma_{2}}{ }^{2}, \cdots, x_{\gamma k}{ }^{k}$ are independent.

Applying the above to each of the $(k-1)$ remaining groups of numbers, we conclude that the numbers ($x_{1} \vee x_{2} \vee \cdots \vee x_{N_{1}^{1}}$), $\left(x_{1}^{2} \vee x_{2}^{2} \vee \cdots \vee x_{N_{2}}{ }^{2}\right), \cdots,\left(x_{1}^{k} \vee x_{2}^{k} \vee \cdots \vee x_{N_{k}}^{k}\right)$ are independent numbers. Hence we have proved the lemma.
We now come to the analog of the theorem of Copeland.
Theorem 2. If the numbers $(q / n) x\left(E_{q}\right),(q=1,2, \cdots, n)$, are such that $x\left(E_{q}\right)=\phi_{E_{q}}\left(P_{1}\right), \phi_{E_{q}}\left(P_{2}\right) \cdots$, where E_{q} is the interval $0<y \leqq p_{q}$ and P_{1}, P_{2}, \cdots is admissibly ordered with respect to the function $m(E)$ defined in $\Delta: 0<y \leqq 1$, and if

$$
X=\sum_{j=1}^{M} Y_{i} \vee \text { and } Y_{j}=\prod_{i=1}^{\alpha j}\left(\frac{q_{i j}}{n}\right) x\left(E_{q_{i j}}\right) \cdot \prod_{i=\alpha_{j}+1}^{n} \sim\left(\frac{q_{i j}}{n}\right) x\left(E_{q_{i j}}\right) \cdot,
$$

where $0<q_{i j} \leqq n$ and $q_{i^{\prime} j} \neq q_{i j}$ if $i^{\prime} \neq i$, and where $Y_{j^{\prime}} \neq Y_{j}$ if $j^{\prime} \neq j$, then X belongs to the set $A(P)$, where

[^2]$$
P=\sum_{j=1}^{M}\left\{\prod_{i=1}^{\alpha_{j}} p_{q_{i j}} \cdot \sum_{i=\alpha_{j}+1}^{n}\left(1-p_{q_{i j}}\right)\right\}
$$

Since the numbers $(q / n) x\left(E_{q}\right)$ are independent, the numbers $\sim(q / n) x\left(E_{q}\right)$ are independent. By hypothesis, we know that $Y_{j} \cdot Y_{j^{\prime}}=0$ if $j \neq j^{\prime}$. Hence $p(X)=P$. Now we wish to show that

$$
p\left[\prod_{s=1}^{k}\left(\frac{r_{s}}{m}\right) X \cdot\right]=P^{k}
$$

for every positive integer m and for every set of distinct integers $r_{1}, r_{2}, \cdots, r_{k}$, such that $0<r_{s} \leqq m$. We know that

$$
\begin{aligned}
\left(\frac{r_{s}}{m}\right) Y_{j}= & \prod_{i=1}^{\alpha_{j}}\left(\frac{\left[q_{i j}+\left(r_{s}-1\right) n\right]}{m n}\right) x\left(E_{q_{i j}}\right) \\
& \prod_{i=\alpha_{j}+1}^{n} \sim\left[\frac{\left[q_{i j}+\left(r_{s}-1\right) n\right]}{m n}\right] x\left(E_{q_{i j}}\right)
\end{aligned}
$$

The numbers constituting the above product are independent, and moreover $\left(r_{1} / m\right) Y_{j_{1}},\left(r_{2} / m\right) Y_{j_{2}}, \cdots,\left(r_{k} / m\right) Y_{j_{k}}$ are independent regardless of whether $j_{1}, j_{2}, \cdots, j_{k}$ are equal or not. Within each group any two distinct numbers are mutually exclusive; that is, $\left(r_{s} / m\right) Y_{j} \cdot\left(r_{s} / m\right) Y_{j^{\prime}}=0$ if $j \neq j^{\prime}$. We may now apply the above lemma. Hence the numbers

$$
\sum_{j=1}^{M}\left(r_{1} / m\right) Y_{j} \vee, \quad \sum_{j=1}^{M}\left(r_{2} / m\right) Y_{j} \vee, \cdots, \sum_{j=1}^{M}\left(r_{k} / m\right) Y_{j} \vee
$$

are independent. We know that

$$
\begin{aligned}
p\left[\prod_{s=1}^{k}\left(\frac{r_{s}}{m}\right) X \cdot\right] & =p\left[\prod_{s=1}^{k}\left(\frac{r_{s}}{m}\right)\left\{\sum_{j=1}^{M} Y_{j} \vee\right\} \cdot\right] \\
& =p\left[\prod_{s=1}^{k}\left\{\sum_{j=1}^{M}\left(\frac{r_{s}}{m}\right) Y_{j} \vee\right\} \cdot\right]
\end{aligned}
$$

but since the numbers $\sum_{j=1}^{M}\left(r_{s} / m\right) Y_{\mathcal{\prime}} \vee$ are independent, the last term is equal to P^{k}. Therefore the theorem is proved.

It is obvious that the above theorems can be extended to an n-dimensional continuum.

St. Louis University,
St. Louis, Mo.

[^0]: * Presented to the Society, February 29, 1936.
 \dagger See the author's memoir The application of the theory of admissible numbers to time series with constant probability, Transactions of this Society, vol. 36 (1934), p. 517.
 \ddagger Same reference as above, p. 524.
 § See Copeland, Admissible numbers in the theory of probability, American Journal of Mathematics, vol. 50 (1928), p. 550, Theorem 16.
 $\|$ The symbol $\sum(q / n) x\left(E_{q}\right) \bigvee$ represents the number $\left\{(1 / n) x\left(E_{1}\right) \bigvee \cdots\right.$ $\left.\vee(M / n) x\left(E_{M}\right) \vee\right\}$, while $\Pi \sim(q / n) x\left(E_{q}\right) \cdot$ represents $\left\{\sim(1 / n) x\left(E_{1}\right) \cdot \ldots\right.$ $\left.\cdot(M / n) x\left(E_{M}\right) \cdot\right\}$. Throughout the paper such symbols will have similar mean-

[^1]: ings. For the truth of this equality, see Copeland, The theory of probability from the point of view of admissible numbers, Annals of Mathematical Statistics, vol. 3 (1932), p. 149.

[^2]: * See Copeland, Admissible numbers in the theory of probability, American Journal of Mathematics, vol. 50 (1928), p. 543, Theorem 6.

