$[(5), 9]$.	$r-3 s .=. i$
$[(4),(6)]$	$p-3 q .=. r-3 s$
$[11.03]$	$(7)=(1)(2)$
$[(7),(8)]$	$(1)(2)$
$[11.2]$	$(1)(2)-3(1)$
$[12.17]$	$(1)(2)-3(2)$
$[(9),(10)]$	(1)
$[(9),(11)]$	(2).

The paradox stated above is a particular case of Theorem 10, and therefore requires no further proof.

National Wu-Han University, Wuchang, China

THE BETTI NUMBERS OF CYCLIC PRODUCTS

bY R. J. WALKER

1. Introduction. In a recent paper $\dagger \mathrm{M}$. Richardson has discussed the symmetric product of a simplicial complex and has obtained explicit formulas for the Betti numbers of the twoand three-fold products. Acting on a suggestion of Lefschetz, we define a more general type of topological product and apply Richardson's methods to compute the Betti numbers of a certain one of these, the "cyclic" product.
2. Basis for m-Cycles of General Products. Let S be a topological space and G a group of permutations on the numbers $1, \cdots, n$. The product of S with respect to $G, G(S)$, is the set of all n-tuples (P_{1}, \cdots, P_{n}) of points of S, where $\left(P_{i_{1}}, \cdots, P_{i_{n}}\right)$ is to be regarded as identical with $\left(P_{1}, \cdots, P_{n}\right)$ if and only if the permutation $\binom{1 \ldots n}{i_{1} \ldots i_{n}}$ is an element of G. A neighborhood of $\left(P_{1}, \cdots, P_{n}\right)$ is the set of all points (Q_{1}, \cdots, Q_{n}) for which Q_{i} belongs to a fixed neighborhood of P_{i}. It is not difficult to verify that the
[^0]Hausdorff axioms hold for this definition of neighborhood, and hence that $G(S)$ is a topological space. In particular, if G is the identity or the symmetric group, $G(S)$ is, respectively, the direct or the symmetric product of S. If G is the cyclic group on n elements we shall call $G(S)$ the n-fold cyclic product of S.

The space $G(S)$ can be obtained in another manner. Let S^{n} denote the n-fold direct product of S. Then each element $\binom{1 \ldots n}{i_{1}, \ldots, i_{n}}$ of G gives rise to an automorphism of S^{n} which carries $\left(P_{1}, \cdots, P_{n}\right)$ into $\left(P_{i_{1}}, \cdots, P_{i_{n}}\right)$. By identifying points which are images of each other under the group of automorphisms we evidently obtain a space homeomorphic to $G(S)$.

Now let K be a simplicial complex, K^{n} its direct product, and $k=G(K)$ its product with respect to the group G of degree n and order r. We then have r automorphisms T_{λ} of K^{n}, and a continuous, single-valued transformation Λ of K^{n} into k, such that \dagger

$$
\begin{equation*}
\Lambda T_{\lambda}=\Lambda \tag{1}
\end{equation*}
$$

Richardson has shown \ddagger that K^{n} and k can be subdivided into simplexes in such a fashion that the transformations T_{λ} and Λ are simplicial. We can therefore operate with them on chains of K^{n}. If E and e are simplexes of K^{n} and k, respectively, such that $e=\Lambda E$, we define the operator Λ^{\prime} by $\Lambda^{\prime} e=\sum_{\lambda} T_{\lambda} E$. We have then

$$
\begin{align*}
\Lambda \Lambda^{\prime} e & =r e \tag{2}\\
\Lambda^{\prime} \Lambda E & =\sum_{\lambda} T_{\lambda} E \tag{3}
\end{align*}
$$

We also find that T_{λ}, Λ, and Λ^{\prime} preserve boundaries and hence homologies.

The principal theorem of Richardson, § concerning the Betti numbers of k, is stated in terms of matrices. For actual computation we find it easier to work with the cycles themselves, and so we shall state and prove the theorem in a slightly different form.

[^1]Theorem 1. Let $\left\{\Gamma^{i}\right\}$ be an independent basis, with respect to homology, for m-cycles, with rational coefficients, of K^{n}, such that $T_{\lambda} \Gamma^{i}= \pm \Gamma^{i \lambda},(\lambda=1, \cdots, r)$; and let $\left\{\bar{\Gamma}^{\alpha}\right\}$ be a maximal subset of $\left\{\Gamma^{i}\right\}$ such that

$$
\begin{equation*}
T_{\lambda} \bar{\Gamma}^{\alpha} \neq \pm \bar{\Gamma}^{\beta}, \quad(\alpha \neq \beta) \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
T_{\lambda} \bar{\Gamma}^{\alpha} \neq-\bar{\Gamma}^{\alpha} \tag{b}
\end{equation*}
$$

for any λ. Then $\left\{\gamma^{\alpha}\right\}=\left\{\Lambda \bar{\Gamma}^{\alpha}\right\}$ is an independent basis with respect to homology for the m-cycles of k.

Proof. (i) The γ^{α} are independent. For suppose that we have $\sum_{\alpha} x_{\alpha} \gamma^{\alpha} \sim 0$, that is, $\sum_{\alpha} x_{\alpha} \Lambda \bar{\Gamma}^{\alpha} \sim 0$. Then

$$
\Lambda^{\prime} \sum_{\alpha} x_{\alpha} \Lambda \bar{\Gamma}^{\alpha}=\sum_{\alpha} x_{\alpha} \Lambda^{\prime} \Lambda \bar{\Gamma}^{\alpha}=\sum_{\alpha, \lambda} x_{\alpha} T_{\lambda} \bar{\Gamma}^{\alpha} \sim 0
$$

by (3). Now if $T_{\lambda} \bar{\Gamma}^{\alpha}=\epsilon \Gamma^{i}, \epsilon= \pm 1$, we cannot have $T_{\mu} \bar{\Gamma}^{\alpha}=-\epsilon \Gamma^{i}$, for this would imply

$$
T_{\mu}^{-1} T_{\lambda} \bar{\Gamma}^{\alpha}=\epsilon T_{\mu}^{-1} \Gamma^{i}=-\epsilon^{2} \bar{\Gamma}^{\alpha}=-\bar{\Gamma}^{\alpha}
$$

contrary to condition (b). Similarly, from (a), we cannot have $T_{\mu} \bar{\Gamma}^{\beta}= \pm \Gamma^{i}, \beta \neq \alpha$. Hence with each such Γ^{i} there is associated an ϵ_{i}, a $\bar{\Gamma}^{\alpha}$, and s_{i} values of λ for which $T_{\lambda} \bar{\Gamma}^{\alpha}=\epsilon_{i} \Gamma^{i}$. If the last homology is now written in terms of the basis $\left\{\Gamma^{2}\right\}$, the coefficient of Γ^{i} will be $\epsilon_{i} s_{i} x_{\alpha}$. Since the Γ^{i} are independent, $\epsilon_{i} s_{i} x_{\alpha}=0$, and therefore every $x_{\alpha}=0$.

Use was made of the properties of the rational coefficients only in the last step of each part of the proof. Now the s_{i} introduced in (i) are factors of r, for the T_{λ} for which $T_{\lambda} \bar{\Gamma}^{\alpha}=\epsilon_{i} \Gamma^{i}$ evidently form a coset of the subgroup which leaves $\bar{\Gamma}^{\alpha}$ invariant. It follows that the theorem will hold for any coefficient group in which each element has a unique r th part; in particular for the group of residues modulo a number prime to r.
(ii) $\left\{\gamma^{\alpha}\right\}$ is a basis. We note first that since the set $\left\{\bar{\Gamma}^{\alpha}\right\}$ is maximal every Γ^{i} is of one of the two forms $T_{\lambda} \bar{\Gamma}^{\alpha}$ or $\tilde{\Gamma}^{j}$, where for each j there is a λ_{j} such that $T_{\lambda_{j}} \tilde{\Gamma}^{j}=-\tilde{\Gamma}^{j}$. Also, $\Lambda \tilde{\Gamma}^{j}=\Lambda T_{\lambda_{j}} \tilde{\Gamma}^{j}$ $=-\Lambda \tilde{\Gamma}^{j}$, so that $\Lambda \tilde{\Gamma}^{j}=0$. Now if γ is any m-cycle of $k, \Lambda^{\prime} \gamma$ is an m-cycle of K^{n}, and so

$$
\Lambda^{\prime} \gamma \sim \sum_{i} x_{i} \Gamma^{i}=\sum_{\alpha, \lambda} x_{\alpha \lambda} T_{\lambda} \bar{\Gamma}^{\alpha}+\sum_{i} x_{j} \widetilde{\Gamma}^{j}
$$

Hence

$$
\Lambda \Lambda^{\prime} \gamma=r \gamma \sim \sum_{\alpha, \lambda} x_{\alpha \lambda} \Lambda T_{\lambda} \bar{\Gamma}^{\alpha}+\sum_{j} x_{j} \Lambda \widetilde{\Gamma^{j}}=\sum_{\alpha, \lambda} x_{\alpha \lambda} \gamma^{\alpha}
$$

by (2) and (1). That is,

$$
\gamma \sim \sum_{\alpha, \lambda} \frac{x_{\alpha \lambda}}{r} \gamma^{\alpha}
$$

3. Betti Numbers of Cyclic Products. Keeping the notation as before, we let G be the cyclic group on n elements. To compute the m th Betti number of the cyclic product k we must count the number of m-cycles $\bar{\Gamma}^{\alpha}$. A basis of the type $\left\{\Gamma^{i}\right\}$ used in the theorem is obtained by taking all cycles of the form

$$
C_{m_{1}} \times \cdots \times C_{m_{n}}, \quad m_{1}+\cdots+m_{n}=m
$$

$C_{m_{i}}$ being a member of a basis of m_{i}-cycles of $K . \dagger$ Following Richardson's procedure, we obtain

$$
\begin{aligned}
T_{\lambda}\left(C_{m_{1}} \times \cdots\right. & \left.\times C_{m_{\lambda}} \times C_{m_{\lambda+1}} \times \cdots \times C_{m_{n}}\right) \\
& =(\dot{-} 1)^{\wedge} C_{m_{\lambda+1}} \times \cdots \times C_{m_{n}} \times C_{m_{1}} \times \cdots \times C_{m_{\lambda}}
\end{aligned}
$$

where

$$
\begin{aligned}
\epsilon_{1}=m_{1} m_{2}+\cdots+m_{1} m_{n}=m_{1}\left(m-m_{1}\right) & =m m_{1}-m_{1}^{2} \\
& \equiv m m_{1}-m_{1} \quad(\bmod 2) \\
& =(m-1) m_{1}
\end{aligned}
$$

and by induction

$$
\epsilon_{\lambda} \equiv(m-1)\left(m_{1}+\cdots+m_{\lambda}\right) \quad(\bmod 2)
$$

Let q be a factor of $n, n=q s$, and consider all Γ^{i} which are invariant, to within change of sign, under G_{q}, the cyclic subgroup of G of order q. They necessarily have the form

$$
\begin{aligned}
\Gamma_{q}=\left(C_{m_{1}} \times \cdots \times C_{m_{s}}\right) \times\left(C_{m_{1}} \times \cdots\right. & \left.\times C_{m_{s}}\right) \times \cdots \\
& \times\left(C_{m_{1}} \times \cdots \times C_{m_{s}}\right)
\end{aligned}
$$

there being q identical sets of factors. We must have $q\left(m_{1}+\right.$
\dagger S. Lefschetz, Topology, p. 228.
$\left.\cdots+m_{s}\right)=m$; that is, to have a Γ_{q}, q must be a factor of m and hence of (m, n), the highest common factor of m and n. If t is a proper multiple of q and a factor of (m, n), it is easily seen that a Γ_{t} is also a Γ_{q}. We denote by Γ_{q}^{*} any Γ_{q} which is not such a Γ_{t}, and by $A_{m, q}$ the number of Γ_{q}^{*}. The total number of Γ_{q} is then $\sum_{t} A_{m, t}$, the summation being over all values of t which are multiples of q and factors of (m, n). But the number of Γ_{q} is evidently equal to the number of possible combinations of the form $C_{m_{1}} \times \cdots \times C_{m_{s}}, m_{1}+\cdots+m_{s}=m / q$, and this is exactly $R_{m / q}\left(K^{s}\right)$. Hence

$$
\sum_{t} A_{m, t}=R_{m / q}\left(K^{n / q}\right)
$$

and from these equations we can obtain the $A_{m, q}$ step by step starting with $q=(m, n)$, or directly by the use of the Dedekind inversion formula.

Now

$$
T_{s} \Gamma_{q}=(-1)^{(m-1)\left(m_{1}+\cdots+m_{s}\right)} \Gamma_{q}=(-1)^{(m-1) m / q} \Gamma_{q}
$$

and so if m is even and m / q is odd, Γ_{q} is a cycle of the type $\tilde{\Gamma}^{j}$ of Theorem 1 and is not counted among the $\bar{\Gamma}^{\alpha}$. We therefore put

$$
B_{m, q}=\left\{\begin{array}{l}
0, \text { if } m \text { is even and } m / q \text { is odd } \\
A_{m, q} \text { otherwise }
\end{array}\right.
$$

Consider the s cycles $\Gamma_{q}^{*}, T_{1} \Gamma_{q}^{*}, \cdots, T_{s-1} \Gamma_{q}^{*}$. If any two of these are equal, say $T_{i} \Gamma_{q}{ }^{*}=T_{j} \Gamma_{q}{ }^{*},(i>j)$, then $\Gamma_{q}{ }^{*}$ is invariant, to within change of sign, under the subgroup generated by $T_{j}^{-1} T_{i}=T_{i-j}$, and hence under the minimal subgroup containing G_{q} and T_{i-j}. Since $i-j<s, T_{i-j}$ is not an element of G_{q} and therefore this subgroup is a G_{t} with t a proper multiple of q, contrary to the definition of Γ_{q}^{*}. It follows that there are exactly $s=n / q$ distinct transforms of each of the $B_{m, q}$ cycles Γ_{q}^{*}, and so we can pick out $(q / n) B_{m, q}$ of the $\Gamma_{q}{ }^{*}$ which are not transformable into one another and which can therefore be included among the $\bar{\Gamma}^{\alpha}$ of Theorem 1 . Since the cycles Γ_{q}^{*} for different values of q are not transformable into one another and since every Γ^{i} is a Γ_{q}^{*} for some q, we have the following result.

Theorem 2.

$$
R_{m}(k)=(1 / n) \sum_{q} q B_{m, q},
$$

the summation being over all factors of (m, n).
The following special cases may be of interest.
Corollary 1. If n is an odd prime

$$
R_{m}(k)=\left\{\begin{array}{l}
(1 / n) R_{m}\left(K^{n}\right), \text { if }(m, n)=1, \\
(1 / n)\left[R_{m}\left(K^{n}\right)-R_{s}(K)\right]+R_{s}(K), \text { if } m=n s
\end{array}\right.
$$

Corollary 2. If p is an odd prime and $n=p^{\alpha}, m=p^{\beta} m_{1}$, $\left(m_{1}, p\right)=1$, and $\gamma=\min \alpha, \beta$,

$$
R_{m}(k)=\frac{p-1}{n}\left[\frac{1}{p-1} R_{m}\left(K^{n}\right)+\sum_{i=1}^{\gamma} p^{i-1} R_{m / p^{i}}\left(K^{n / p^{i}}\right)\right] .
$$

Corollary 3. If $R_{0}(K)=1$, then $R_{1}(k)=R_{1}(K)$.
4. Remark. The methods used on the cyclic product can evidently be used to compute the Betti numbers of a product with respect to an arbitrary group. In general, however, the resulting formulas are too complicated to be of interest.

Cornell University

[^0]: \dagger M. Richardson, On the homology characters of symmetric products, Duke Mathematical Journal, vol. 1 (1935), pp. 50-69. We shall refer to this paper as R .

[^1]: \dagger In the expression for the product of two transformations, the transformation represented by the right-hand symbol is to be applied first.
 \ddagger R, pp. 51 and 53.
 § R, p. 52.

