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ON T H E D E T E R M I N A T I O N OF EARTH CONDUC­
TIVITY FROM OBSERVED SURFACE 

POTENTIALS* 

BY R. E. LANGER 

If a direct current is supplied to the earth through a small 
electrode, a distribution of electrical potentials over the sur­
rounding surface of the earth is produced. The variation of 
this potential with the distance from the electrode depends upon 
the manner in which the conductivity of the earth below the 
surface varies with the depth, the calculation of the potential 
when this conductivity is known being possible by familiar 
methods. From the standpoint of geophysics, however, it is 
most frequently the converse problem which is important. The 
surface potential is accessible, and is therefore at least theoreti­
cally measurable. From it the unknown subterranean con­
ductivity is to be deduced. The discussions of this problem 
which are to be found in the geophysical literature have almost 
without exception been based upon considerations of the trial 
and error type. The potentials associated with a suitable set of 
hypothesized conductivities are computed, and by fitting ob­
served potentials to these, as best may be, inferences about the 
unknown conductivity are sought. 

A direct method, on the other hand, has been given recently 
by L. B. Slichterf and the present author.J I t is assumed (as 
has generally been done) that the conductivity is a function 
only of the depth, and the Tay lors series expansion of this func­
tion is deduced from the surface potentials. The problem may, 
therefore, be regarded as solved whenever the conductivity 
function is one which is represented, at least to the depth in 
question, either by its Taylor's series directly or by analytic 
extensions of the same. The present paper is intended to extend 
the deductions to the case in which either the conductivity 

* Presented to the Society, April 10, 1936. 
t L. B. Slichter, The interpretation of the resistivity prospecting method for 

horizontal structures. Physics, vol. 4 (1933), p. 307. 
% R. E. Langer, An inverse problem in differential equations, this Bulletin, 

vol. 39 (1933), p. 814. 
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or its derivative shows a discontinuity within the depth range 
to be explored. Such discontinuities are evidently to be asso­
ciated with stratifications of the earth's crust, and for their 
analysis the previous method, based as it is upon the use of 
power series, obviously requires extension. I t is to be shown how 
such extension can be made, namely, how both the location 
and magnitude of the first discontinuity may be determined. 

If the region of the earth in proximity with the electrode is 
idealized as an infinite half-space, the line of the electrode is 
a line of symmetry, and the cylindrical coordinates (p>x) (radial 
distance from the electrode, and depth) are clearly advanta­
geous. Referred to them, the potential <t> satisfies the differential 
equation 

(d2<j> 1 d<t> d2<j>) d<r(x) d<j> 

\dp2 p dp dx2) dx dx 

in which <r(x) represents the unknown conductivity.* The analy­
sis of this equation may be made along familiar lines. The sub­
stitution <j>=U(p)"u(x) leads to a Bessel's equation for the 
radial component U(p), and gives for the depth component u(x) 
the differential equation 

(2) u" + -1— u' - \2u = 0, 
<r(x) 

in which X is a positive parameter. The conditions that the po­
tential be everywhere finite and non-increasing, and that both 
the potential and the current be continuous, dictate for U{p) 
the choice 7o(Xp). For u(x) they determine that continuous 
solution Uo(x, X) of the equation (2), which for every positive X 
is a non-increasing function of x, and for which <T(X)UQ (X} X) is 
continuous. The existence of just one such solution may be in­
ferred from the fact that <r(x), by its nature, is positive for all 
values of x. Finally the condition that d<j>/dx be zero at the 
earth's surface, except at the electrode, may be made to yield 
the formula 

— c Ç °° sin \a UQ(X9 X) 

27TO-(0) J o a UQ (0, X) 

* Many details which are here omitted are to be found in the papers cited. 
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in which c represents the current and a the radius of the elec­
trode. If the function Q(X) is now defined in terms of the solu­
tion u0(x, X) specified above, by means of the formula 

(3) Oft)- \ ' ', 
UQ (0, X) 

the surface potential is clearly given by 

sinXa 

2TT<r(0)J0 ~v"/ \a 

Since this formula is invertible into 

2ira\*a(0) 

0 

+b, 0) = — ^ — f 0(X) ^W 0 (Xp)<*X. 
27ra-(0) •/ 0 

27raXV(0) f00 

OW T-T— *G>, 0)/o(Xp)PJp, 
c sin \a J a 

it is clear that a knowledge of the surface potential is co-exten­
sive with a knowledge of Q(X). The latter may, therefore, be used 
in place of the former as a basis for the further considerations. 

From the asymptotic expansion of the function Î2(X) a power 
series in x which is formally the Taylor's series of a'(x)/<r(x) is 
deducible. This series, together with such analytic extensions 
of it as may exist, defines a function s(x) over an interval, say 
O ^ x ^ i J , and from this in turn a function <Ti(x) is determined 
through the formulas 

(<r(0)e1aMd*, for 0 ^ x ^ H, 
(4) <ri(%) = < 

Ui(ff), for fl < *. 

The possibility or the feasibility of the computation of <r\(x) 
may be regarded as the factor limiting the constant Hy and H 
represents the depth to which the "exploration" applies. I t 
will be clear at once that if the true conductivity <r(x) is repre-
sentable over the interval (0, H) by means of power series, it 
necessarily coincides with <ri(x), and its determination over the 
interval is in consequence completely covered in the discussions 
cited. In proceeding, therefore, it will be assumed that the coin­
cidence of <r(x) and G\{x) ceases before the depth H is reached, 
that is, specifically, 

<r(x) = <ri(x), for 0 ^ x < h < H, 

O-(/H-) = p<r(h-)9 <r'(h+) = v<r'(h-), 
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the constants /i, p, being positive and not both unity. The 
solution Uo(x, X) by virtue of its specification then satisfies in 
particular the relations 

(6) u0(h-, X) = u0(h+, X), ui(h-, X) = ixui(h+, X), 

and the entire problem crystallizes into the determination of the 
constants h, ju> and v. 

Let the function ai(x) be looked upon now as a hypothetical 
conductivity. Then, in the manner outlined above it is associ­
ated with the function 

- XÎ;0(0, X) 
(7) Qi (X)- , , „ ' > 

VQ (0, X) 

with v0(x, X) representing the non-increasing solution of the 
differential equation 

(8) Z," + _ ^ V - X 2 z ; = 0. 
<Ti(x) 

Since <ri(x) is continuous, the same is to be the case with 
vo(x, X) and v0' (x, X), and since <Ti(x) is known the function (7) 
is computable. 

Let v\(x, X), z>2(#, X) designate the principal solutions of the 
differential equation (8) relative to the origin, that is, those for 
which 

n(0,X) = 0, »i;(0,X) = 1, 

v%(0,\) = 1, vi(0,\) = 0. 

Then the functions (3) and (7) are expressible in the forms 

\W(u0, vi) \W(VQ, vi) 
(9) 0(X) ï-1—L, Oi(X) = K—LJ±, 

W(u0, V2) W(vo, v2) 
in which W denotes the Wronskian, that is, 

and in which any x on the range (0, h) will serve in the evalua­
tion of Q(X), while any x on (0, H) serves in the case of Oi(X). 
To verify these assertions it is necessary only to observe: firstly, 
that vi(x, X), v2(x, X) are also solutions of the differential equa-
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tion (2) when x is on (0, h) ; secondly, that the formulas (9) are 
obviously correct when the right-hand members are evaluated 
at the origin ; and lastly, tha t the ratios of Wronskians involved 
are constants as to x on the intervals stated. Since 

cr(0) 
W(v2fv1) = — ~ - on (0,ff) , 

0-1(0?) 

it is found that 

(10) Oi(X) - a ( \ ) = W V ' 
<r(h-)W(Uo, V2)W(Vo, ^ 2 ) J a ^ -

The evaluation of the right-hand member of this relation hinges 
now upon a determination of the functional forms of the several 
solutions which are involved. 

When X is large and x is on an interval on which <r(x) is con­
tinuous the solutions of the differential equation (2) are known 
to admit of asymptotic representations with respect to X. 
Specifically they may be represented in the form 

u3(x, X) = <ZjF+(x} a) + PjF-(x, cr), 

in which a;-, ]3,- are appropriate constants, while 

f l (^ = [^]'V{l±^+0(l)}, 
with 

/

'* iff" ffn\ 
< >dx. 

0 W 8<r2/ 

Moreover, 

F±(0,<r) = 1, 

Under corresponding conditions the solutions of the differential 
equation (8) may, of course, be similarly written 

Vj{x, X) = yjF+(x, <TI) + bjF-.(%, <ri). 
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Consider now any interval, h^x^h+e, on which <r(x) is 
continuous. On this, as on any interval, u0(x} X) is non-increas­
ing. Since F+(x, <r) is an increasing function, and since it 
dominates the function F-(x, <r) for any # > 0 , it must be in­
ferred tha t the coefficient a0 is sufficiently small to make the 
term in question asymptotically negligible. Thus 

UQ(XJ X) = F-{%, X) on (h, h + e), 

and hence 

W ( * . , x ) - { - x - ^ + o ( l ) } ^ , x ) . 

In virtue of the relations (5) and (6) this may be written 

( l i a ) ui (h-, X) = J - /iX - — — + 0(jjj uo(h-, X). 

An entirely similar consideration, in which it is recalled, how­
ever, tha t <T\(x), v0(x, X), and Vo (x, X) are continuous, leads to 
the corresponding formula 

( l ib) W ( ^ X ) = { - X - ^ + 0 ( - i ) } ^ - , X ) . 

Finally the relation 

1 ( </(0) / 1 \ ) 

+î-{ i-iSI+0(i)}F-fe")' 
is directly verifiable on the basis of the definition of z>2(#, X). 
However, the second term of this expression is asymptotically 
negligible in the presence of the first. I t follows that 

I T <r(0) n 1 / 2 ( I f <r'(0) 1 

(HO) t
 +<^)}^' 
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With the results (11a), ( l i b ) , and ( l ie) a t hand, the evaluation 
of the right-hand member of the relation (10) is now immediate. 
I t is found thus that 

2(A - l)<r2»x 

Oi(X) - Q(X) = 

where 

A=n+(v-l) 

(A + 1)(B+ 1) ' 

and 
2\<r(k 

*'(or 

a formula which is more conveniently written according as 
(x^l or M = 1 in the appropriate one of the following forms. 
Tha t is, if /* 7^1, 

log j y [Ox(X) - 0(X)]| = - 2h\ + l o g ( ^ — ) 

! ! - ( „ - IV(fr-) _ or̂ O) _ "I _ / ^ \ 

X L ( M 2 - 1)«T(A-) <r(0) T J \XV' 

(12) 

+ 
X 

and if ju = 1, 

(13) 

log j y [Oi(X) - 0(X)]| 

O - l)<r'(Hl / 1 \ 

The analysis of these results may now be outlined very 
simply. The function Q(X) is to be regarded as known from the 
experimentally determined surface potentials. From it the func­
tions <Ti(x) and Qi(X) are successively computable. The left-hand 
members of the relations (12) and (13) are, therefore, at hand. 
Let the values of (12) be plotted against X. Then if the resulting 
graph shows a rectilinear asymptote, it follows from the signifi­
cance of the respective terms on the right of (12) that the slope 
and intercept of this asymptote are respectively equal to — Ih 
and to log [(/x —l)/(/x + l ) ] . Hence the graph serves to deter­
mine the constants h and ju. An analysis of the distance between 
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the graph and its asymptote would clearly give the value of v. 
If, on the other hand, the graph in question shows no asymp­
tote, tha t fact signifies that ix — 1. In that case the left member 
of (13) is to be plotted. Since v is now not equal to unity this 
graph will show an asymptote, the slope and intercept of which 
determine h and v. 

HARVARD UNIVERSITY 

A SERIES OF INVOLUTORIAL CREMONA SPACE 
TRANSFORMATIONS D E F I N E D BY A PENCIL 

OF RULED CUBIC SURFACES* 

BY AMOS BLACK 

1. Introduction. A series of involutorial Cremona transforma­
tions of space were defined by Snyderf by means of a corre­
spondence between the surfaces of a pencil of ruled surfaces and 
the points of a rational curve, called the director curve. The di­
rector curve was a part of the basis of the pencil and two of the 
chief characteristics of the transformation were : one of the prin­
cipal surfaces was a ruled surface R, all of whose generators were 
parasitic lines ; all the tangent planes of the surfaces of the homa­
loidal web along a certain curve were fixed, being determined by 
the surface R. 

In this paper we shall define a series of transformations by 
means of a correspondence between the surfaces of a pencil of 
ruled cubic surfaces and the points of certain rational curves. 
The director curve is not part of the basis of the pencil ; one of 
the principal surfaces is a ruled surface R, all of whose genera­
tors are parasitic lines; all the surfaces of the homaloidal web 
have fixed tangent planes along a certain curve, but none of the 
fixed planes are determined by R. 

2. Definition of the Transformation. Given a pencil of ruled 
cubic surfaces | F$ | whose basis curve consists of a double line d 

* Presented to the Society, September 13, 1935. 
t Virgil Snyder, On a series of involutorial Cremona transformations of space 

defined by a pencil of ruled surfaces•, Transactions of this Society, vol. 35 (1933), 
pp. 341-347. 


