$F\left(x, y, d y / d x, \cdots, d^{n} y / d x^{n}\right)$ is an exact derivative if and only if $\partial F / \partial y-d / d x$ and $\partial F / \partial y_{1}+\cdots+(-)^{n} d^{n} / d x^{n}$ and $\partial F / \partial y_{n}=0$, where $y_{k}=d^{k} y / d x^{k}$. The inductive proof here presented appears to be the shortest elementary proof yet devised. (Received November 2, 1936.)

ERRATUM

On page 497 of this volume, abstract 42-7-311 (by Professor C. C. Camp), in the statement of the lemma, replace the words "otherwise zero" by "and $h-\theta$ when $h=h^{\prime}+\theta, 0<\theta<1$, where h^{\prime} is an integer."

