
MODEL STARS1 

BY HENRY NORRIS RUSSELL 

The distinguished record of the Willard Gibbs Lecture is more 
than enough to place a newcomer upon his mettle. In accepting 
the kind invitation of your President to add my contribution 
to the list, I must warn my hearers, as I warned him, that you 
will not hear today such a masterly discussion of major con­
tributions made by your speaker as you have heard when the 
topic was uRelativity and Thermodynamics", or "Resonance in the 
Solar System" My humbler task must be to report upon the 
work of others in a field which I have only lightly touched. 

The field itself is important enough, and the advances of 
knowledge in the past twenty years are sufficiently impressive. 
At that time we knew little, and dared not venture to guess 
much more, concerning the internal constitution of the stars ; and 
some of the guesses which then looked best were wrong. Now 
we know enough to have interpreted some of the facts which 
then appeared hopelessly puzzling, and we still know little 
enough to afford room for very lively and enlightening con­
troversy. Astronomy, physics, and mathematics have con­
tributed to the advances. The astronomers contributed the ob­
servational data, and had already provided a great part of these, 
two decades since. Modern atomic theory laid the foundations 
for the new structure, while mathematical analysis—of a kind 
simple enough to the mathematicians, but little used previously 
in astronomy,—built it up. 

So far has the work already progressed that it would far ex­
ceed the limits of this lecture, or of the time available for your 
lecturer's preparation—not to speak of those of your patience— 
to give a detailed critique of the present situation. I will attempt 
only to give a general account of the problem, and deal in a 
sketchy fashion with some aspects of the solutions so far at­
tempted, which elucidate something regarding the inner nature 

* The Thirteenth Josiah Willard Gibbs Lecture, delivered at New York 
City, October 31, 1936, under the auspices of the American Mathematical 
Society, at a joint meeting of the Society and the American Physical Society. 
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of the stars and something, too, regarding that of the investiga­
tors. 

Perhaps the greatest problem of deductive physics may be 
posed as follows. Given a large quantity of matter, isolated in 
space, with all the necessary initial data regarding it, to find its 
subsequent history. Exhaustively handled, this would be a 
problem indeed. Its complete solution, according to the thor­
ough-going mechanist, would render quite superfluous the whirl 
of straw-votes and political prognostications in which at the 
moment we are submerged. Leaving these high matters—or 
shall I say low?—and returning to the realms of dynamics and 
physics, let us note that the problem has been inadequately, and 
too comprehensively, stated. If the quantity of matter is sup­
posed to be collected into a number of separate moving pieces, 
the study of their gravitational motions alone involves the 
whole problem of n bodies, or, if we choose to carry it back into 
the past, the more difficult questions of cosmogony. Let us as­
sume then, that our matter is concentrated into a single lump; 
and again that this lump is so big that the molecular forces be­
tween its least parts are insignificant in effect, compared with 
the gravitational forces which act upon it as a whole. This re­
duces the problem of equilibrium substantially to one of hydro­
statics, and greatly simplifies the discussion. 

We have now come to the astronomical problem; but it is 
still so big that it must be attacked piecemeal. The mass may 
be in rotation, whether like a rigid body or with angular velocity 
varying from part to part; or, even if it has no net angular 
momentum, it may not be initially in equilibrium, or at rest, 
and may subsequently undergo oscillations, complicated, in 
general, by the compressibility of the material. Consideration of 
these possibilities,—which appear to be realized among actual, 
observable stars, and are of great astrophysical importance— 
should evidently be deferred till the simpler case of the mass at 
rest has been discussed. 

We have now a tractable problem of hydrostatics, since we 
have already assumed rigid forces to be negligible. The equi­
librium configuration will obviously be spherically symmetrical, 
with concentric strata of equal density and the hydrostatic 
pressure p will be given by the familiar equation 

(1) dp = - pgdr. 



Ï937-] MODEL STARS 51 

From the elementary relation an important consequence fol­
lows. We have in general, if dv is the volume element, 

I p dv — pv — I v dp. 

Integrating from the center to the outer radius R, since the first 
term vanishes, we have 

ƒ f R4: Gm 1 rMGmdm 1 
pdv=j ~vr*.p — dr = - = - 0 , 

Jo 3 r2 3 JQ r 3 
where m is t h e mass inside a sphere of rad ius r, M t h e whole 
mass, and 0 its potential upon itself. 

Let us now assume that the pressure arises kinetically from 
molecular motions. Then p is two-thirds the energy-density 
arising from the translational motions of the molecules, and if 
E is the whole amount of such energy within the body, E = 12/2. 
Hence for any mass maintained at rest in hydrostatic equi­
librium by molecular motion, one-half the energy necessary to 
expand it to infinity against its gravitation is present in the 
translational motions of the molecules. The sum total of all the 
remaining available energy of the matter—of molecular rota­
tion, chemical and ionization processes, and so on—must be less 
than the translational energy; otherwise the mass could liberate 
energy by diffusing altogether into space. For certain stars, as 
we shall see later, the margin of safety is small. 

Further progress with our problem depends on the adoption 
of some relation connecting pressure and density. The simplest 
case—though by no means the first one to be discussed—is that 
of the cold body, a mass which contains no internal energy 
capable of transfer to another body, or radiation into space, in 
the form of heat. This is far from saying that it has no internal 
energy at all; the zero-point energy of the quantum theory 
remains. 

For low pressures, when cold matter is crystalline, the ex­
pression for this is complicated, but at great pressures and high 
densities it becomes simple, for the matter is no longer crystal­
line, but degenerate. 

I believe that Bridgman was the first to point out that a 
sufficiently great hydrostatic pressure, at however low a tern-
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perature, should suffice to break down the quantized structure 
of "electron orbits" in the outer parts of atoms, and reduce the 
whole mass to a swarm of separate electrons and nuclei. The 
quantum relations are still active, and the same restriction 
which ordinarily limits the number of electrons in a given shell 
now demands that not more than so many slow-moving elec­
trons may be crowded into a given volume. When this state of 
degeneracy has been fully reached, the pressure and density are 
connected by the relation* 

(3) p = KiP*'*y 

where 

1 / 3 Y ' 3 h2 

(4) Ki = —[~ ) = 9 . 8 6 X 1 0 V " 
2 0 \ 7 r / m(M '#)5 / 3 

5/3 

in c.g.s. units, H is the mass of the unit of atomic weight, m 
that of the electron, and ju' is the mean mass, in atomic-weight 
units, per free electron in the completely ionized material. Here 
only the electrons are supposed to be degenerate. Degeneracy 
for the nuclei, though possible, does not come within the range 
of our discussion. 

The equations (1) and (3) suffice to determine the configura­
tion of the mass completely. They present a particular case of 
the polytropic equilibrium which was thoroughly discussed by 
Emden,f in a memoir which has had great influence. 

If, in general, we set 

p = Kpl+Vn, 

and if we set 0 n =p, ^ = r[(^ + l)/4xG]1 / 2 , we find from (1), 

d2d 2 dd 
(5) + + 0n = 0. 

de I d£ 
This is Emden's equation. For n = 0 and n = l it is easily inte­
grated. For other values of n it defines new transcendental func­
tions, though for n — S it admits of the solution 0 = ( l+£2 /3)~1 / 2-
The solutions of this equation have been extensively studied, 

* E. A. Milne, Monthly Notices of the Royal Astronomical Society, vol. 91 
(1930), p. 30. 

f Gaskugeln, Leipzig, 1907. 
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especially by R. H. Fowler.* For a given value of n there is a 
double infinity of solutions. For the vast majority of these 6, 
when carried inward towards £ = 0, either increases without 
limit, or passes from originally positive values to negative. 
Only for a simple infinity of solutions is 6 finite when £ = 0 
(and d0/d^ = O). All these solutions may be derived from the 
one for which 0 = 1, £ = 0 by multiplying 0 and dividing £ by 
appropriate scale-constants. These are obviously the only solu­
tions which give results of physical significance, when applied 
to the whole of a spherical mass, though other solutions may 
apply to the outer parts of a sphere containing a core defined in 
some other way. With this limitation each value of the poly-
tropic index n defines a perfectly definite law of distribution of 
internal density within the mass—which we may describe as 
the model on which it is built. 

These solutions were accurately computed by quadratures, 
by Emden, and his calculations have been extended, with still 
greater precision, under the direction of Comrie. The value 
n=Q gives a homogeneous sphere. As n increases, there is a 
steadily growing concentration of density toward the center, the 
ratio of the central to the mean density being as follows : 

w = 0 1 1.5 2 2.5 3 4 4 .5 4 .9 5 
Pc/pm 1.00 3.29 6.00 11.40 24.08 54.3 623 6378 9.35X10 5 oo 

For n = 5 the sphere extends to infinity, and for greater values 
of n there is no finite solution with finite central density. 

These polytropic solutions have had a remarkable influence 
on later work in this field. In certain cases they appear naturally 
as a result of definite physical assumptions; for example, the 
"ordinary" degeneracy of equation (3) gives n = 3/2, and Ed-
dington's famous solution n = 3. There is no evidence, however, 
that they are in general inherently adapted to the solution of 
problems of the present sort, as the ordinary trigonometric 
functions, spherical harmonics, Bessel functions, and so on, are 
in well known cases; and there can be little doubt that, in many 
instances, the convenience of having a set of functions already 
computed has led theoretical workers to design their postulates 
so that they would be led to polytropic functions rather than 
to the very heavy labor of new quadratures. 

* Monthly Notices of the Royal Astronomical Society, vol. 91 (1930), p. 63. 
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In any case, the poly tropic functions are well suited for 
choice as a generalized set of density-models, since, with a 
moderate range of the parameter nf they represent all degrees 
of central condensation. It may finally be noted that at the 
boundary of such a sphere, 0, p, and p vanish, while dd/d% re­
mains finite, though approaching zero as n approaches 5. 

Returning now to the degenerate cold body, we note that its 
central density is six times the mean density—not a high de­
gree of concentration. If the mass M and molecular weight /x 
are given, all the properties of the body are completely deter­
mined, as was first pointed out by Milne. 

In terms of the sun's mass and radius, it is found that 

R /MY-1'* 
= 0.040 (• 

Ro \jyj-o. 

MY-1'* 
— ) M'" 5 / 3 . 
M J 

For masses comparable to the sun's, the mean density is of the 
order of 15000/x5. 

The white dwarf stars have densities of this order, which is 
just what might be expected if they are approaching, but have 
hot yet reached, the loss of their internal heat. It is practically 
certain that they have highly degenerate cores, shading off into 
normal gas at the surface. Twenty years ago these stars pre­
sented the most intractable—indeed, apparently unintelligi­
ble—problem in astrophysics. Today they are closer to a com­
plete theoretical solution than any others. 

When the pressure and energy-density become extremely 
great, and the velocities of the electrons approach that of light, 
a new stage of relativistic degeneracy gradually sets in. When 
it is complete, the equation of state is* 

/ 3 \ 1 / 3 he 
(6) p = K2P*'*, K2 = ( — ) = 1.23 X 101 y - 4 / 3 . 

This leads to a poly trope n = 3, with central density 54 times 
the mean. In Eddington's opinion, the arguments which lead 
to this equation of state are erroneous, and equation (3) should 
hold good for all densities. Practically all other investigators 

* Chandrasekhar, Monthly Notices of the Royal Astronomical Society 
vol .91 (1931), p. 458. 

file:///jyj-o
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disagree with this conclusion, and the general consensus will 
here be followed. 

The transition between the two types of degeneracy has been 
worked out in detail by Stoner* and Chandrasekhar, who give 
the exact equations 

7TW4C5 . 
P = [x(2x2 - 3 ) 0 2 + l ) 1 ' 2 + 3 sinh-1*], 

3h* 
STMZCVH 

Chandrasekhar, by an elegant piece of analysis,f has shown 
that in this case Emden's equation must be replaced by 

1 d / 2d4>\ / 2 1 \ 3 / 2 

rj drj\ dr)J \ y0
2 / 

where y2~x2 + l, r=arj, y=y^, and a and y^ are constants. 
This equation takes exact account of the onset of relativistic 
degeneracy. Chandrasekhar has integrated it by quadratures. 
The radius depends on the mass in the following fashion (taking 
the sun's mass and radius as units). 
ikfV2 0.88 1.61 2.44 3.53 4.31 5.29 5.48 5.73 
r/i' 0.040 0.031 0.025 0.019 0.014 0.008 0.006 0.000 

A new phenomenon here appears—the limiting mass M0 

= 5.73/jU/2. For smaller masses the limiting radius, though small, 
is definite. For M=M0, it is zero; while for larger masses, as, 
Chandrasekhar shows, complete degeneracy cannot occur, since, 
even with the limiting model n = 3, the energy-density required 
to balance the gravitational pressure exceeds that of the zero-
point state, so that the mass can never be internally cold. The 
ratio of the two is independent of the radius, and no limit 
exists. 

Incidentally, in the relativistically degenerate state the pres­
sure is one-third of the energy density, so that the whole of the 
energy of gravitational contraction will be exhausted in keeping 
up the pressure. A body of mass M0, once it became relativisti-

* Monthly Notices of the Royal Astronomical Society, vol. 92 (1932), p. 
651. 

t Ibid., vol. 95 (1935), p. 207. 
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cally degenerate, would therefore contract rapidly, with no need 
of getting rid of any surplus energy by radiation, while an 
ordinarily degenerate mass would have to radiate away half of 
the gravitational supply—which, in view of the low luminosity 
of white dwarfs, would take an enormously long time. 

The final state of a larger mass can only be conjectured. It is, 
of course, physically absurd to suppose that its density would 
become infinite. Whether, and when, the electrons or nuclei 
would be jammed so closely that their own effective volumes 
would have to be considered, cannot be definitely stated. Some­
thing would have to happen, anyhow, by the time that the 
radius óf the body was reduced to the relativisitic equivalent 
of its mass (about one mile for the sun)—but some one else had 
better say what would happen ! 

For small masses, the formula based on degeneracy must 
also fail. A ton of matter, for example, cooled toward the abso­
lute zero, would undoubtedly settle down as a crystalline mass 
of density not much different from that at higher tempera­
tures, and the same should be true of bodies the size of aster­
oids, or even of planets, though, in the latter case, the gravita­
tional pressure would considerably increase the mean density. 

For such bodies, the radius obviously increases with the 
mass. In the degenerate case, the radius decreases with in­
creasing mass. There must therefore be some intermediate 
mass for which the radius of a cold body is a maximum, and no 
body in the universe can be larger than this, unless it is hot in­
side. Kothari and Majumdar,* following a suggestion of the 
speaker, conclude that the critical mass is about 1/200 the 
sun's and the radius about 20,000 km. The problem of the cold 
body is determinate when once the total mass and the chemical 
composition are given, provided that the mass is great enough 
to produce ionization by pressure, and degeneracy, throughout 
most of its extent. Variations in composition will then affect 
only the mean molecular weight At. For small masses, in which 
ordinary compounds occur, the complexity may be great; but 
such masses are observable only within the solar system. 

For hot bodies, the equation of state contains a new param­
eter—the temperature—, and the increased freedom corre­
sponds to the introduction of an arbitrary function into our 

* Nature, vol. 137 (1936), p. 157. 
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solutions. Suppose, for example, that we are dealing with a per­
fect gas for which p = RpT/fx, where R is the gas constant, and 
ix the mean molecular weight per free particle (including elec­
trons, ions, neutral atoms, and molecules). We may represent 
any arbitrary spherical distribution of density by the equation 

(7) P = poX, 

where p0 is the mean density (3/47r)Mr~3, and X is a function 
of r, arbitrary except for a normalization factor. The hydro­
static pressure P at any point follows by quadratures, and may 
be expressed in the form 

(8) P = PoY, 

where 

SG 
(9) Po = M 2 r 4 

Sir 

and is the pressure at the center of a homogeneous sphere, and 
F is a function of r, completely determined when X is given. 
The gas-equation then gives 

ixG Y M 
(10) T = 

2R X r 
If the temperature at any point has this value, a sphere of any 
arbitrary density-model X will be in hydrostatic equilibrium 
throughout. With the numerical values for the sun, 

fxY 
(11) T = 1.15 X 107 (in Centigrade degrees). 

X. 

We have therefore to deal throughout practically the whole in­
terior of the sun (and of the stars at large), with temperatures 
enormously too high to permit the formation of compounds, 
with the great resulting complications. Indeed, the atoms them­
selves will be very highly ionized—stripped almost to their nuclei. 
Under these conditions, the mean molecular weight p, is nearly 
the same for most of the elements, ranging from 1.9 for carbon 
to 2.3 for iron (as the calculations of Fowler and Guggenheim 
show in detail). For hydrogen, however, /z = 0.5. 

This greatly simplifies the discussion. The chemical com-
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position, if we include all known atomic species, is a function 
of 90 variables. In practice this number could be reduced to 
about a dozen by ignoring rare elements, and grouping others 
with similar properties. But for the present purpose atoms fall 
into two classes, hydrogen and the others, and the specification 
of the abundance of hydrogen suffices for a first approximation. 

A second, and still more important, consequence of the high 
temperature is that radiation pressure becomes significant (as 
Eddington was the first to realize). The hydrostatic pressure 
of radiation in an enclosure of temperature T is q = aT4/3, 
(a = 7.6X10~15). If we set p = /3Py g = ( l - / 3 ) P , it follows that 

1 - / 3 T aGz F 3 F 3 /M\2 

(12) = ^M2 = 0.0325 M 4 ( — ) , 
04 18 R* X4 X4 \ 0 / 

where O is the sun's mass. The internal constitution of a 
gaseous star built on any arbitrarily assigned density-model 
is now completely determined, the temperature at any point 
being /3 times the value given by (10). An exact solution must 
take the variations of \x into account; but the ionization, and 
hence M , at any point depends only on the local temperature and 
pressure, and the composition of the material. If the latter is 
known, along with the pressure and density, the values of ju, /3, 
and T are determinate, and may be found by trial and error. 

In the absence of any knowledge of the composition, our exact 
solution still involves an unknown function of ninety variables ! 
To avoid hopeless complications, it is customary to assume that 
the material within our body is well mixed and of uniform com­
position throughout. In this case the problem becomes quite 
definite; but whether the composition of the very thin surface 
layer which can be reached with the spectroscope is typical of 
the interior of a star must be settled, if at all, in other ways. 

Though a mass of gas of uniform composition may be in 
equilibrium with any arbitrary density model, it need not be 
stable. Models in which the density decreases inward at any 
point, for example, are obviously unstable, for vertical convec­
tion currents would lead to a rearrangement of lower potential 
energy. The compressibility of the gas makes things worse, and 
the familiar condition for convective stability is that the tem­
perature gradient shall be less than that value corresponding to 
an adiabatic transfer of gas from the higher to the lower pres-
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sure. When changes in the internal energy of the gas are oc­
curring—for example, when its degree of ionization alters— 
convection may set in despite a considerable temperature 
gradient. Unsold has shown, for example, that a convective 
region may occur just under the photosphere of the sun, where 
the hydrogen, highly ionized in depth, is almost entirely neutral 
at the surface, and thus the resulting currents, ascending above 
the top of the convective layer, and cooled by expansion in their 
last stages, give a reasonable explanation of sun-spots. Con­
vection regions, with some models, may also occur in the deep 
interior. 

So far, we have ignored one rather important property of our 
model stars: we have not bothered to ask whether and how 
brightly they will shine. They must shine, for they are hotter 
inside than outside, and heat will flow from the hotter to the 
cooler regions. The three familiar processes of transfer, conduc­
tion, convection, and radiation, must all be considered; but, 
under stellar conditions, the last is usually so much more effec­
tive than the others that they may be neglected. 

If neutrons, with their long free paths, were abundant in the 
interior, conduction might be important, but consideration of 
this may be deferred until nuclear physicists have settled the 
question whether neutrons are stable enough to exist perma­
nently in a medium where collisions are numerous and violent. 

The equation of radiative transfer of energy may be written 

f x c da 
(13) H = - , 

kp dr 
where c is the velocity of light, and k the mass-coefficient of 
opacity of the medium. In the deep interior of stars, this arises 
mainly from the photo-electric ionization of the partly stripped 
atoms by incident photons—which for the most part have the 
energy and wave-length of soft X-rays. Scattering by free elec­
trons plays a subordinate part. An exact calculation of opacity 
would be difficult, demanding a study of the energy-levels of the 
individual atomic types, and an integration of the effect over all 
wave-lengths, weighted according to the distribution of the 
radiation ; but a good approximation can be obtained by smooth­
ing out the individual peculiarities. The results of Kramers and 
Gaunt, which are generally accepted, lead to the formula 
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(14) k = CpT-v*. 

The coefficient C depends on the composition of the gas. Hydro­
gen and helium, which are practically always reduced to bare 
nuclei, contribute very little directly to the opacity, though the 
electrons released from them do their share. 

For the total flux of radiation outward through a sphere, 
inside the star, of radius r, we find 

4:ircr2 do 
(15) / = -• 

kp dr 
This may be calculated for any model, and gives the flow of heat 
corresponding to the assumed conditions. If there are no internal 
sources of heat, the temperature and other properties of the 
mass—including in general the law of distribution of density— 
will change with the time. For a body which, like most stars, has 
a store of internal heat millions of times the annual radiation, 
the changes will be slow. 

If our model is to represent a star, we must endow it with 
sources of heat sufficient to supply the flux. The rate of libera­
tion of heat, per unit mass, within the shell of radii r and r+dr 
must be 

1 dl 
(16) e = . 

4irr2p dr 
For a model chosen at random, e is likely to be negative in some 
regions, which must be supposed to contain sinks, rather than 
sources, of available energy. This assumption does not appear 
to be physically absurd, nor impossible; but it is aesthetically 
unattractive, and is very unpopular among model-makers. Un­
til some specific reason can be given why, under specified con­
ditions, heat or radiant energy should be frozen into some un­
available form, this prejudice may well be respected. 

The exclusion of heat-sinks places considerable restrictions 
upon the permissible models—for example, it rules out the 
outer parts of many poly tropic distributions—; but it still 
leaves our problem indeterminate by an arbitrary function. 

The solution becomes definite if the law of generation of 
energy is known. We may take p, q as independent variables, 
and have 
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P = p(Pt <7>M) > equation of state. 

k = k(p,q,iJL), equation of opacity. 

€ = €(p, q, JU) , equation of heat generation. 

(17) kl - 4TT<;GW 

dm = 4irpr2dr, Ĵ > = pdr, 
47rcr2 

kl 
dl = 4ir€pr2dr, dq — — pdr. 

4ircr2 

In the equations of state, and so on, \x has been introduced as a 
sort of shorthand for the composition of the material. It actually 
represents a most formidable complexity, for there is the best 
of reason to believe that different isotopes may behave differ­
ently as regards the liberation of nuclear energy, so that, in 
general, JJL stands for a function of more than two hundred 
variables, whose relative influence may vary in an unknown 
fashion with r. 

We may cut the Gordian knot by assuming as before that the 
material is well mixed and of constant atomic and isotopic com­
position. Then fi becomes a definite, though complicated, func­
tion of p and q, depending on the ionization, and p, K, and e 
are also known functions of p, q. 

We may assume them to be one-valued and completely defi­
nite, with no disposable parameters. This would not be true 
for the equation of state if two or more phases were present (as 
for a liquid at its boiling point) ; but the high temperatures of 
the stars, even at their surfaces, dispel the fear of such com­
plications. 

The assumption that the opacity depends entirely upon the 
local values of p and q is not universally true, for k is a harmonic 
Rosseland mean of the values for different frequencies. If the 
incident radiation came from regions at a considerable distance, 
as is the case in a planetary nebula, or the envelope of a nova, 
its spectral composition would depend on conditions in its 
source. Inside a star, however, the opacity is considerable in a 
distance of one meter, and the differences between the local cir­
cumstances and those in the region from which sensible direct 
radiation comes are entirely negligible. 



62 H. N. RUSSELL [February, 

More questionable is the assumption that e depends only on 
local conditions. It appears to be legitimate for the liberation 
of energy from sub-atomic sources—for cosmic rays, the only 
known external agents which might produce effects of this order, 
do not penetrate beyond the merest surface of a star. But it is 
certainly not true for the next largest known source of energy, 
gravitational contraction. The rate of exhaustion of potential 
energy is proportional—other things being equal—to the rate 
of contraction of the mass and is altered by any concomitant 
change in the density-model, while the rate of storage of energy 
by changes in ionization, and so on, depends on the rate of 
change of the local conditions. The whole analytical treatment, 
in which it has been tacitly assumed that the size of the mass 
and the internal distribution of matter do not change with 
time, is in this case inapplicable. 

Even sub-atomic energy must ultimately be exhausted, and 
no star which shines can therefore be in a perfectly steady state. 
But the time-scale of the resulting changes is so long that the 
neglect of the undoubted diminution of mass, and the probable 
changes in composition, presumably introduces no significant 
errors. 

We will now treat the functions p, k, e as one-valued and 
completely definite, and devoid of poles or other singularities 
for finite values of p, q. This last assumption is necessary if they 
are to represent physically real quantities; the former will fail 
for sufficiently low values of q, that is, of the temperature. By 
excluding this range, we will limit the applicability of our re­
sults to actual stars very little, if at all. For very high tempera­
tures and pressures the form of the functions is imperfectly 
known; but the assumption that their values are finite and 
definite ought still to be sound. 

We have now a system of differential equations of the fourth 
order. For any given r, we may assign any desired initial values 
of p, q, I, m, and follow the corresponding solution indefinitely 
by analytical continuation, or by numerical quadratures, which 
is another name for the same thing. Our solution will have a 
physical meaning, so long as p, q, l, m are all positive. Within 
these limits, it may be interpreted as representing the configura­
tion of a mass of matter, limited internally by a rigid sphere of 
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mass rn, emitting the radiation l\, and externally by a rigid 
spherical wall absorbing the radiation /2 and sustaining a pres­
sure P2+ÇI2. 

But if our model is to represent an autonomous star, it must 
satisfy certain boundary conditions. Two of these come at the 
center; we must have Z = 0, m = 0, when r = 0, since point-
masses and point-sources of energy have no physical sense. 

The other applies at the outer boundary, and is less easy to 
describe with precision. It may be approximately stated by de­
fining the boundary as the value of r for which p = 0, and assum­
ing that g = 0 at the same point. But the actual temperature at 
and above a star's surface is high. The equilibrium of the outer 
layer, which presents a simpler problem than that of the in­
terior, has been fully studied and it is found that the tempera­
ture falls asymptotically toward a limit To which is (3/16)1/8 

or 0.885 times the effective temperature T6 defined by the flux 
of radiation escaping per unit area from the surface. The outer 
atmosphere of the star is nearly isothermal, and the decrease 
of density with height is approximately exponential. 

For a high value of gravity, such as prevails on the sun and 
most stars, the density drops from a considerable value to 
practically zero in less than a thousandth of the radius, so that, 
for practical purposes, the star has a sharp boundary. If q0 

is the value of the radiation pressure corresponding to T0, we 
may define our boundary condition by saying that q approaches 
q0 as p approaches zero. This is not a rigorous statement, for the 
equation of energy-transfer requires some modification in the 
outer atmosphere, but it is amply sufficient in practice. 

Indeed, the internal temperatures of the stars are so much 
greater than those at the surface that two solutions of the 
fundamental equations—one starting with p = 0, g = 0, and the 
other with p = 0, q = qo—when carried inward would soon differ 
by less than a millionth part, so that the simpler form of the 
boundary condition is practically sufficient. 

In a generalized study of autonomous gas-masses this would 
not be permissible. There may be solutions corresponding to 
bodies of such small density as to be translucent to a consider­
able fraction of the radius. For these the diminution of gravity 
in the upper parts of the atmosphere has to be considered; and 
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the solution is much more complicated; but they are model 
nebulae, and not model stars. 

We might also consider the possibility of an outer envelope 
supported by differential radiation pressure, such as is directly 
observable in the solar chromosphere, and has been detected 
photometrically and spectroscopically about the remarkable 
eclipsing variable Zeta Aurigae ; but the pressure at the base of 
such an envelope is utterly negligible from our present stand­
point. 

Out of the four-fold infinity of solutions of our system of dif­
ferential equations, only a single infinity will satisfy the three 
independent boundary conditions. The model stars which can be 
formed out of a precisely specified material therefore form a one-
parameter family. For any given value of any property of such a 
model, for example, its mass, all its other characteristics—such 
as radius, luminosity, internal distribution of density—will be 
completely defined. There may of course be more than one solu­
tion for the given mass, but the solutions will be discrete and 
definite. If any two properties of the series of models, for ex­
ample, mass and radius, luminosity and effective temperature, 
are plotted as coordinates, the resulting points will lie on a 
definite curve. 

This important theorem is due to Vogt.* It has immediate 
practical applications. On the familiar diagram in which the 
absolute magnitudes of the stars are plotted against the spectral 
types, the majority of the points lie on a narrow band—the 
main sequence—extending from the hot and luminous B-stars 
to the cool, faint M dwarfs. This sequence may represent a 
series of stars of similar composition but different masses. The 
scatter of the points about the median line is too large to at­
tribute to observational error, but is just what might be ex­
pected from minor differences in composition. The other im­
portant sequence (the normal giants) may perhaps represent 
a series differing in composition—or dependent on some more 
easily liberated source of energy. But all across the upper part 
of the diagram are points representing the super-giant stars, 
which are scattered almost at random over a large area. These 
suggest very strongly that, among the stars of great mass and 

* Astronomische Nachrichten, vol. 226 (1926), p. 301. 
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luminosity, there are important differences of composition or of 
energy-generation involving at least one continuously varying 
parameter. It may be, as Strömgren and Kuiper have sug­
gested, that the properties of stars of small mass are much less 
sensitive to this parameter, and that the narrow spread along 
the lower part of the main sequence corresponds to the wide dis­
persion of the super-giants; but this is still speculative. 

I must come back from real stars to models. The actual com­
putation of the set of models corresponding to given functions 
p, k, e, would be exceedingly laborious. One starts, of course, 
at r = 0, with promising assumed values of p and q, and deter­
mines m and /, and then dp/dr and dq/dr, by quadratures of the 
usual sort. Two of the three boundary conditions are thus in­
cluded at the start. The integration is continued until p (or q) 
approaches zero, or begins to run wild. It would be an extraor­
dinary piece of luck if the initial values should be chosen so that 
p and q vanished simultaneously. If they do not, the quad­
ratures are repeated, starting, for example, with the same value 
of q and another of p ; and this process of trial and error is con­
tinued until the boundary condition is bracketed and then 
reached by interpolation. This gives a model star with assigned 
central temperature. Repeating the whole process for various 
values of q, the series of models can ultimately be obtained. 

It is not surprising that no complete series of such models has 
so far been calculated. A few interesting cases, based upon 
plausible laws of heat-generation, have been worked out by 
Steensholt, Biermann, and others, but not enough has yet been 
done to reveal fully the theoretical way in which the radius and 
surface temperature change with the mass. 

The time is hardly ripe, indeed, for so great a task; for very 
little is yet known regarding the rate of liberation of sub-atomic 
energy which should occur in a gas of specified composition, 
pressure, and temperature. 

It is now generally believed that the source of stellar energy 
is to be found in the transmutation of hydrogen, or of neutrons, 
into heavier atoms, with disappearance of the excess of mass 
possessed by the proton or neutron, and liberation of the cor­
responding amount of energy. The alternative hypothesis, the 
annihilation of atoms, with transformation of the whole mass 
into energy, is now little considered, since there is no evidence, 
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theoretical or observational, that it may occur, while a host of 
reactions of the other sort have recently been produced in the 
laboratory, and studied in detail. 

When the laws which govern these processes have been fully 
worked out, it may be possible to predict e theoretically and 
proceed to a complete and rational theory of the stars; but 
enough is already known to indicate that a fairly detailed 
knowledge of the atomic and isotopic composition of the ma­
terial will be a prerequisite for any precise calculation. 

Empirical models of stellar interiors will probably remain 
useful for a good while to come, and we may well discuss some 
of these. 

First in order of time, and, even yet, of importance, is Ed-
dington's "standard model," a name given by his friendly critic, 
Milne. Let L, M be the values for the whole star, and let 
l/m = rjL/M. Then, by (15), since m = - (r2/Gp) (dP/dr), 

4wcGM do 
(18) krj = - • 
V L dP 

When Eddington originally derived this relation in 1916, noth­
ing definite could be theoretically predicted about either k or 77, 
and the assumption that each was separately constant had the 
merit of simplicity, and also of giving a directly integrable 
equation. If krj=K0, we have 

K0L 
(19) a = (1 - p)P, 1 - 0 = — — , 

4:TTCGM 

where the constant of integration is taken to be zero, on ac­
count of the low surface temperature. Substituting in equation 
(12), we have 

ry py 
= const. or = const. 

X4 p4 

If ix is constant throughout the mass, this leads to Pocp4/3, and 
to the Emden poly trope » = 3, and the model is completely de­
termined, the central density being 54 times the mean. 

We may take account of variations of /z qualitatively by 
assuming that ^ ^ P ^ , and get apolytropeof index 3/(1 —x). This 
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is of course an ad hoc procedure to secure a poly trope, while 
the original assumptions led to one naturally; but its value ap­
pears when we note that the ionization decreases, and fi in­
creases, toward the surface, which demands a negative #, a 
poly tropic index less than 3, and a smaller central condensa­
tion. 

We now have L = (4CTTCG/KO)M(1 — /3). For this poly trope 
F 3 /X 4 = 0.091, so that 

1 - p /M\2 

= 0.0031/4— J . 
/ 3 4 \ 0 / 

The last two equations express the renowned mass-luminosity 
relation. Determining K0 empirically, from the accurate data 
for Capella, Eddington found that his curve represented the 
reliable data then existing for the whole range of masses, un­
expectedly including the faint and dense red dwarfs, and was 
thus led to the realization that the high ionization inside the 
stars caused the material to behave practically like a perfect 
gas, even at very high density. 

With the physical law k<xpT~712 and the poly trope n = 3, the 
condition krj = const, demands sinks of energy near the sur­
face. This difficulty can be avoided by altering the model for 
the outer part of the star, with but small change in the mass-
luminosity relation. In the main part of the interior, e increases 
rather slowly toward the center, being roughly proportional 
to T. 

If we keep rj constant, assume the general polytropic relation 
T<xfid, p<*0, Poc0w+1, and confine ourselves to stars of small 
masses, we find easily thatn = 3 J, a result due to Jeans. This poly­
tropic solution, however, does not hold good for the whole model, 
for (1 — fi)//34<x 0~1/4 and becomes so large near the surface that an 
approximation fails. Only the separate assumptions k = const., 
rj = const, lead therefore to a strictly polytropic solution. 

Another interesting model is that in which the whole liberation 
of energy is supposed to take place in a point-source at the 
center. The solution must be made by quadratures, and the first 
computations were made by Eddington. Some general proper­
ties were later worked out analytically by Cowling.* Near the 

* Monthly Notices of the Royal Astronomical Society, vol. 91 (1930), p. 92. 
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center of this model is a hole where the enormous radiation pres­
sure drives the matter away, and leaves almost a vacuum. 
Though physically unreal, this model is useful as the limiting 
case of extreme concentration of the energy sources in the inner 
and hotter regions. 

Eddington's calculations—made for a single case, with mass 
5.02 times the sun's—revealed one important fact. The luminos­
ity of the point-source model was fainter by only 0.97 stellar 
magnitudes than that of a standard model of the same mass, 
radius, and composition. For models of the latter type, with 
masses ranging from 0.2 to 20 times the sun's—about the actual 
range among the stars—the luminosity varies by 16 magni­
tudes. The effects of the great change in the model are almost 
negligible in comparison. 

Later investigations have fully confirmed this conclusion. For 
stars of the same composition, the mass-luminosity relation is 
extraordinarily insensitive to variations in the model. The 
fullest discussion is Vogt's.* He finds the relation (in our nota­
tion) 

4TCG r p dlog/x4! 

,__„ ( 1-w[1 +_x W +_y, 
where 

dlog( ^ 
\ X 4 / dlogX 

x ( f ) = : — : _ = 3 - 4 — — . 
d log P d log Y 

For homologous stars, with the same density-model, x M is 
the same at homologous points. If the values of j8, x> " ' ' a r e 

taken for a sphere enclosing, say, 99 per cent of the mass, the 
luminosity of the star as a whole will be reproduced within the 
errors of observation. The term d log fxA/d log P is small. It is 
possible to design a model such that x M has any value; but it 
will usually be small. For example, for the polytrope of index n, 
X = (3 — n)/(l+n), and changes only from +0.60 to —0.33 as 
n runs from 1.5 to 5, which includes the range of central con­
densation likely to be met with. The greatest corresponding 
change in stellar magnitude is — 0m.95, when /3 = 1. 

If the zero-point of the mass-luminosity relation is deter-
* Veröfïentlichungen der Universitàt-Sternwarte zu Jena, vol. 3 (1930). 
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mined from the stars themselves, the course of the curve will be 
almost the same for a great variety of models. The conspicu­
ous agreement of observation with this curve, which is fully con­
firmed by all the data now available, is therefore strong evi­
dence in favor of Eddington's general theory of stellar luminos­
ity, but not diagnostic in favor of his original model, or any 
other. 

For a given model and mass, the predicted luminosity is 
greatly influenced by the assumed mean atomic weight /x, since 
1 — j8oc/x4j84. For a mass composed predominantly of hydrogen, 
ix is close to 0.5; for one of heavy atoms, it is about 2.2, and /x4 

changes by a factor of 370, corresponding to 6.4 magnitudes. 
With increasing percentage of hydrogen, the luminosity rap­
idly diminishes. For a mass of almost pure hydrogen, the ef­
fect is reversed, for the opacity arises mainly from the metals, 
and becomes very low when these are absent, so that a pure 
hydrogen star would again be bright. These principles, dis­
cussed by Eddington,* have been fully worked out by B. 
Strömgren,t who finds that, if the coefficient in the opacity 
formula is taken strictly from theory, the observed luminosities 
usually lie about midway between the upper and lower limits, 
and can be accounted for by a percentage of hydrogen (by 
weight) which is close to 30 for most of the stars for which good 
data are available. (There is an alternative solution, with more 
than 99 per cent of hydrogen, which appears to be improbable.) 

Strömgren, from rather weak data regarding certain eclipsing 
variables, concluded that the percentage of hydrogen in giant 
stars is considerably smaller; but this conclusion is not con­
firmed by your lecturers just-completed work on visual double 
stars, and the question must remain sub judice for the present. 

We are now faced with a serious problem. Why should the 
observed correlation between mass and luminosity be as close 
as it is? Differences in the hydrogen content alone may account 
for a range of over five magnitudes in the luminosity of a star 
of given mass. The extreme observed range (corrected for errors 
of observation) is perhaps one-third as great. The stars, in 
general, appear to be very similar in composition, or at least in 

* Monthly Notices of the Royal Astronomical Society, vol. 92 (1932), p. 
471. 

t Zeitschrift für Astrophysik, vol. 4 (1932), p. 118. 
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hydrogen content. The future explanation of this must be sought 
from nuclear physics—evidently no theory of stellar models can 
account for it. 

It is noteworthy, however, that the observational evidence of 
similar hydrogen content comes entirely from main-sequence 
stars and giants, for which Vogt's Theorem indicated similarity 
of composition, at least within each group. We have as yet no 
data regarding the masses of super-giants, except for rather 
doubtful estimates for Cepheid variables. 

Another apparent difficulty, however, is more easily solved. 
With the accepted expression for the opacity, the mass-lu­
minosity relation takes the form 

L = const. M5-5^7-^8-5^"0 '5. 

On account of the factor R~112, a star of given mass may be 
provided with any assigned luminosity by adjusting its radius. 
Why then do we find a mass-luminosity correlation? We may 
introduce the effective surface temperature Te in place of R, by 
the relation L = const. R2Te

4, and so find 

L = const. MAAW'8Te°'s. 

Now L is the bolometric luminosity, corresponding to the total 
heat-radiation. For values of Te between 4000° and 10,000°, a 
considerable percentage of this is in the spectral region accessi­
ble to visual or photographic observation. A five-fold increase 
or decrease of temperature would throw all but a beggarly frac­
tion of the radiation into unobservable regions, so that observa­
tional selection would give us an apparent mass-luminosity cor­
relation if no real one existed. 

The remarkable correlations which exist between L and Te 

for the actual stars make this explanation irrelevant. Their 
origin is again to be sought in nuclear physics. 

An important addition to our stock of stellar models results 
from Milne's extensive work. He approaches the problem from 
a new direction. Previous investigators had assumed a knowl­
edge of most, if not all, of the properties of stellar matter— 
molecular weight, opacity, energy-generation—and deduced the 
luminosity and radii of stars as functions of their masses. 
Milne starts with the information that a star has a given mass, 
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luminosity, and radius, and inquires what configurations may 
possess these values. The results of the different lines of ap­
proach are well illustrated by the over-simplified but tractable 
standard model, in which e and k are supposed to be constant. 

Eddington's original analysis showed that, in this case, a 
model of mass M, composed of perfect gas with given values of 
k and jLt, must have exactly a certain luminosity io, though it 
may have any radius whatever. This solution enriched astro­
physics with the mass-luminosity law; but it has what Jeans 
has quite justly called "weird and wonderful properties," for it 
demands that e shall have the precise value L0/M and no other, 
that is, that a star of given mass must generate energy at 
exactly this rate if it is to be capable of permanent existence. 
These strange properties are, however, purely fictitious—a re­
sult of the arbitrary assumptions k = const., /x = const. Under 
these conditions, the free parameter determining the set of solu­
tions consistent with Vogt's Theorem is the radius R, and the 
weirdness of the results represents only the fact that the graph 
of such a set, in the MR plane, is a horizontal straight line. If 
either k or /JL is supposed to vary with the physical conditions, 
the paradox vanishes (except for specialized functional forms 
such as k =p/jf3, which bring it back). 

Milne, studying the configuration of a mass M, with the same 
constant fx and k, but a different e (or L), was led to the solutions 
of Emden's equation which had previously been passed over 
because of the existence of central singularities. 

If L < L 0 , the solution, carried inward from the known values 
at the surface, exhausts the mass before the center is reached. 
A mass with a hole in the middle is physically absurd ; but it is 
not absurd to ask what would become of a mass M, composed 
of real gas possessing the given properties. Milne shows that it 
would collapse and increase in density until the simple gas-
laws failed to apply. The decreasing compressibility then makes 
a solution possible, with a high but finite central density, and a 
small radius. For L>L0 the mass is not exhausted as r tends to 
zero. If L — LQ is small, equilibrium may be attained, formally, 
by placing a point-mass at the center, or, in a physically signifi­
cant manner, by assuming the existence of a small core of high 
density, within which the equation of state is different. When, 
however, L exceeds a certain limit Li, equilibrium is impossi-
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ble, for the radiation pressure exceeds the gravitational, and the 
mass must expand to infinity. 

Milne's later studies,* on a generalized standard model, in 
which e is the same throughout, but k is substantially zero in the 
degenerate core and constant in the envelope, show that the 
configurations of models of fixed mass, but different e and L, 
will be of the collapsed type if L <L0 (the value corresponding to 
Eddington's simple solution), and centrally condensed if L>L0. 
Above a certain limit Lmax, no equilibrium configurations exist. 
Between this and L0j there are two centrally-condensed solu­
tions, differing in radius, size of core, and other properties. If all 
these configurations are arranged in order of the relative radius 
of the core, the series becomes linear. 

Starting with the familiar diffuse solution, with no core, and 
L = L 0 , the configurations with a small core are centrally con­
densed, with increasing L. For a certain core-radius L is a maxi­
mum. So long as L>L0, the configurations are still centrally 
condensed. The transition to the collapsed type takes place 
through a quasi-diffuse configuration of small radius, and with 
a degenerate core, but with the outer portion exactly the same 
as a diffuse configuration of the same size. Finally L = 0 when 
the whole mass is degenerate and cold. 

This linear series is not of the type predicted by Vogt's 
Theorem, for e, and hence the composition, varies along it. But, 
from a complete set of solutions of Milne's problem, for different 
values of M (k and ix being the same throughout) it would be 
possible to pick these for which L/M had a constant value e0, 
and so obtain a series consistent with the theorem (since the 
transition from the perfect gas to the degenerate equation of 
state, though supposed for convenience to be abrupt, involves 
no disposable constants). From Milne's calculations it appears 
probable that the original diffuse configurations would have the 
greatest radius. 

The collapsed models toward the end of this series, with large 
degenerate cores and small luminosities, afford an admirable 
representation of the white dwarfs, and a notable triumph for 
Milne's analysis. The earlier stages have not yet been definitely 

* Monthly Notices of the Royal Astronomical Society, vol. 92 (1932), p. 
610. 
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matched with actual stars, but may be represented by the 
fainter red dwarfs. 

However accurate our knowledge of the law of opacity, and 
the luminosity of individual stars might become, there is still 
great difficulty in the approach from this side, for the molec­
ular weight in the sub-surface layers depends greatly on the 
abundance of hydrogen, and L0 depends on this. Unless some 
way can be found for determining the hydrogen abundance a 
priori—and accurately—it remains as a disposable parameter. 
By adjusting it, L0 can be made equal to the observed L, over 
a wide range of the latter, and even the type of the configura­
tion changed. Change of the radius with the size of the core 
affords a better hope of solution; but, unfortunately, the effec­
tive temperature, surface brightness, and diameter of a faint 
red star are very difficult to determine accurately by observa­
tion; so the question remains unsettled. 

It is generally agreed that collapsed configurations are always 
of small radius, and so can represent only white dwarfs. Whether 
centrally condensed configurations can exist with large radii is 
still a matter of debate. Milne, from certain general considera­
tions, believes it probable that they do (in advance of detailed 
calculations to settle the question). Eddington* and Chan-
drasekhar,f from a discussion of the outer region, or envelope, 
of a model star, conclude that they do not, but their latest work 
involves simplifying approximations. 

There is a possibility of answering this question in quite a 
different way. In a close binary pair, the individual stars must 
be flattened at the poles by their rotation. If the orbit is eccen­
tric, the periastron will then advance, at a rate depending not 
only on the masses and radii of the components (which are 
known from observation) but on the degree of central con­
densation. Several cases of apsidal motion of this sort are 
known, and in one, Y Cygni, a complete revolution of the ma­
jor axis has been observed. 

This hope of obtaining definite information about the internal 
density has been shattered by recent investigations of Walter. 
In the case which occurs most often, the rotation and revolution 

* Monthly Notices of the Royal Astronomical Society, vol. 91 (1931), p. 
109. 

t Ibid., vol. 96 (1936), p. 647. 
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periods of the stars coincide, and they are drawn out into 
ellipsoids by tidal forces. Treating these ellipsoids as rigid, 
Walter has shown that the motion becomes much more compli­
cated. The major axes of the ellipsoids oscillate about the line 
joining their centers; there are then three free periods instead 
of one, and it is found that the line of apsides should slowly 
retrograde. 

If the stars have broken loose from tidal control, and are 
spheroids, with rotation periods shorter than the orbital, the 
periastron advances—and it is noteworthy that, in all cases in 
which an advance has been observed, the components are rather 
small compared with their mutual distance, so that this hy­
pothesis is reasonable. But, in this case, the exact rotation 
periods are unknown, and the resulting oblateness, and theoreti­
cal motions of the apse, share the uncertainty. 

An extensive literature, and some controversy, has grown 
out of Milne's work. The difficulty has arisen largely from the 
great difference in the manner of approach to the question. 
Speaking roughly, Eddington and his school state it as a physi­
cal problem—what will happen to a mass of real matter, or, at 
least, of matter idealized no more than is necessary, to get 
something that can be handled analytically? Milne and his fol­
lowers state a mathematical problem—given the mass, luminos­
ity and radius of a body, what may be inferred regarding its 
internal constitution, assuming the exact validity of certain 
equations of state, and the like? The student whose thought pro­
ceeds habitually along either line has sometimes hard work not 
to misunderstand the other. One may sympathize with Ed­
dington when he said years ago, in answer to doubts regarding 
the convergence of a series: "Surely this verifies my statement 
that C is negligibly small. I need scarcely say that I have not 
suggested that we should neglect 10,000,000,000 C " ; and 
equally with Milne, when he found that his expression, "a star 
endowed with sources of energy totalling to L," had been inter­
preted by his critics as "provided with sources of fixed total 
strength L," when he actually meant "possessing sources which, 
under the actual internal conditions, total L"—without hy­
potheses as to what they might be under other conditions. Both 
lines of approach are valid, and both have led to notable ad­
vances in astrophysical knowledge. When the underlying equa-
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tions rest upon well-established physical principles, they 
naturally lead to the same results—when misinterpretations and 
occasional casual slips have been cleared up. When no accepted 
physical basis is yet available, the postulates preferred by vari­
ous investigators may differ, and the results diverge, but it is 
just in this way that knowledge is ultimately advanced, when 
some decisive test has been found. 

One final phase of the subject demands discussion—which 
must now be brief. We have so far dealt only with the existence 
of equilibrium, and not at all with its stability. A stellar model 
may fail of permanence in several ways. 

I t may be in unstable gravitational equilibrium. The best ex­
ample is a mass for which a small change in the total kinetic 
energy of the molecules and photons involves a change in the 
internal energy (of ionization, for example) of the same sign and 
greater in amount—in other words, one in which the ratio y of 
the specific heats is less than 4/3 . A contraction of such a body 
would liberate a certain amount of gravitational energy, but call 
for the imparting of a greater amount to the mass to maintain 
it in equilibrium. It would therefore be out of balance, contract 
still further, and make things worse. A small expansion would 
release more energy than was required to lift the mass against 
gravity, and result in expansion at an increasing rate. A mass 
of perfect gas, with y < 4 / 3 (if such were possible), could there­
fore never be in stable equilibrium; it would either contract 
indefinitely or expand till it was dissipated altogether into 
space. 

No such startling behavior need be feared for a star as a 
whole; but it is possible that in certain zones—where, for ex­
ample, several electrons are being removed in rapid succession 
from the i-shells of abundant atoms—the effective value of y 
might fall locally below the safe limit. If such a state should be 
gradually approached—say during the slow contraction of the 
star—a rapid and catastrophic contraction of the affected zone 
might set in, resulting in a change of model, and a great libera­
tion of gravitational energy, which, at the start, would appear 
as heat—sensible and latent—in the collapsed zone. Following 
an idea of Milne's, it may be surmised that an internal collapse 
of this sort (not very deep within the star) may supply the 
energy for the explosive outburst of a Nova. 
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A star is in thermal equilibrium if it contains internal sources 
of heat sufficient to supply the loss by radiation. A disturbance, 
for example, by a homologous contraction, will alter the rate 
of loss—increasing it if k<*pT~7/2 and L<xR~1/2. If the source-
strength is increased more than this, the star is stable. This 
happens because a star, as a whole, has a negative specific heat; 
contraction increases the internal temperature, but dimin­
ishes the total internal energy, when gravitation is taken into 
account. The generation of excess heat within it, after contrac­
tion, therefore causes expansion and restores the status quo. 

A star with constant e (for example, one deriving its energy 
from radio-activity) would therefore be thermally unstable. The 
rate of liberation of heat from sub-atomic sources, however, 
would presumably increase very rapidly with the temperature, 
and avoid this. The danger, in any case, would not be immedi­
ate, for, with the definition given here, a star which derived its 
energy wholly from gravitational contraction would be quite 
unstable; yet, if comparable with the sun, it would continue 
shining for millions of years. 

The third danger is of pulsatory instability—or "overstabil-
ity" as Eddington has called it. Under dynamical forces alone, 
a gravitating mass of gas, if compressed to less than its equi­
librium volume, would expand, over-shoot the mark, and be 
left in oscillation—the fundamental type being a simple radial 
pulsation, or change of volume of a spherical mass. In an actual 
mass the leakage of heat from hotter to colder regions would 
tend to damp the oscillation out. The pulsation would alter 
the rate of generation of heat inside, and of escape from the 
surface; but a change in the mean radius would equalize the 
integrated values of the two over the period. If, however, the 
rate of generation increased rapidly with temperature, most of 
the heat would be liberated when the star was smallest, and 
thus provide a series of expansive impulses, timed just so as to 
increase the oscillation. If this effect was greater than the damp­
ing, the amplitude of pulsation would increase exponentially 
(at least until other modifying forces began to operate) and the 
star would be overstable. 

Investigations by Eddington and Jeans indicate that this is 
to be feared, provided that e increases much faster than T2. This 
presents a very serious difficulty, and has led Sterne and others 
to believe that the source of energy is to be sought in small, 
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highly condensed central regions, w"here, at a temperature 
exceeding 109 degrees, reversible transformations of matter into 
radiation may occur. The difficulty has however been sub­
stantially removed by Cowling* who finds that, if e increases 
rapidly with T, the temperature gradient will be so high that a 
zone of convection will be formed in the interior of a star. This 
leads to important changes in the density model, and, in par­
ticular, removes the holes of low central density which appear 
in some models carefully calculated from plausible laws of 
energy generation. 

Cowling's analysis shows that e may vary as rapidly as T20 

without causing over-stability, unless the value of 7 for the gas 
itself is close to 4 /3 . 

From one standpoint, the business of building model stars 
may be regarded as highly successful. Starting with the most 
general principles of physics, models have been constructed 
which closely represent the properties of stars—not of one sort 
alone, but of practically all types—and satisfy the conditions 
of stability. The mass-luminosity relation, and the enigmatical 
white dwarfs, have been explained. 

From another aspect, most of the work is still to do. The 
analytical problems which remain—such as those presented by 
zones of convection—can probably be solved, approximately 
at least, by ingenuity in discussion and assiduity in quadra­
tures. But the physical problems still baffle us. From the nature 
of the situation, no unique solution for the law of energy gener­
ation can be derived from a study of the properties of stars as a 
whole, even if these were known with high precision. There is a 
much better chance of being able to deduce the generation law 
from nuclear physics ; but present knowledge indicates that this 
is likely to depend on the composition of the material in a com­
plicated fashion, so that the problems of steady states and pos­
sible evolution of the stars, and of the relative proportions and 
possible transmutation of the elements within them are likely 
to be intimately connected, as Atkinson's pioneer work has 
shown. 

We may not live to see the final success; but, when it comes, 
it will the more enlarge our knowledge of the Universe. 
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* Monthly Notices of the Royal Astronomical Society, vol. 96 (1935), p. 42. 


