ON THE SUMMABILITY OF FOURIER SERIES

BY W. C. RANDELS

1. Introduction. It is well known that the Abel method of summability is stronger than the Cesàro methods of any order. An example has been given* to show that there are series which are Abel summable but not Cesàro summable for any order. This series is one for which $a_{n} \neq o\left(n^{\alpha}\right)$ for any α, and hence which cannot be (C, α) summable for any α. This series cannot be a Fourier series since for all Fourier series $a_{n}=o(1)$. We propose to give an example of the existence of a Fourier series which is Abel summable but not Cesàro summable.

We shall make use of some results of Paley \dagger which show that, if the Fourier series of $f(x)$,

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1}
\end{equation*}
$$

is (C, α) summable at the point x, then, for $\beta>\alpha$,

$$
\begin{aligned}
R_{\beta}(f, t) & =\beta \int_{0}^{t}\{f(x+\tau)+f(x-\tau)-2 f(x)\}(t-\tau)^{\beta-1} d \tau \\
& =o\left(t^{\beta}\right), \quad \text { as } \quad t \rightarrow 0
\end{aligned}
$$

and conversely, if $R_{\alpha}(f, t)=o\left(t^{\alpha}\right)$, as $t \rightarrow 0$, then the series (1) is (C, β) summable for every $\beta>\alpha+1$. We shall first show that for every $n>1$ there is a function $f_{n}(x)$ such that at $x=0$

$$
\begin{equation*}
\varlimsup_{i \rightarrow 0}\left|\frac{1}{t^{j}} R_{j}\left(f_{n}, t\right)\right|=\infty, \quad(j \leqq n-1) \tag{2}
\end{equation*}
$$

but

$$
\begin{equation*}
R_{n}\left(f_{n}, t\right)=o\left(t^{n}\right), \quad \text { as } \quad t \rightarrow 0 \tag{3}
\end{equation*}
$$

This implies that the Fourier series of $f_{n}(x)$ is ($C, n+2$) summable at $x=0$ and therefore Abel summable. The function

[^0]$$
f(x)=\sum_{n=2}^{\infty} d_{n} f_{n}(x)
$$
is then defined with the d_{n} 's so chosen that the Fourier series of $f(x)$ is Abel summable, but for every n
$$
R_{n}(f, t) \neq o\left(t^{n}\right), \quad \text { as } \quad t \rightarrow 0
$$

This implies, by the theorem of Paley, that the Fourier series of $f(x)$ cannot be (C, α) summable for any α.
2. Properties of $f_{n}(x)$. We suppose for the moment that n is fixed and we let $c=(1+1 /(n-1 / 2))$. We define $a_{\nu}=2^{-c \nu}$, $b_{\nu}=2^{-\nu}-a_{\nu}$; then, if $\nu \geqq n, b_{\nu}>2^{-(\nu+1)}$, so that the intervals ($b_{\nu}, 2^{-\nu}$) are non-overlapping for $\nu \geqq n$. We define
$f_{n}(x)= \begin{cases}2^{\nu}, b_{\nu} \leqq|x| \leqq b_{\nu}+\frac{a_{\nu}}{2^{n}}, & (\nu=n, n+1, \cdots), \\ -f_{n}\left(x-2^{j} \frac{a_{\nu}}{2^{n}}\right), b_{\nu}+2^{j} \frac{a_{\nu}}{2^{n}}<|x| \leqq b_{\nu}+2^{j+1} \frac{a_{\nu}}{2^{n}}, \\ \quad(j=0, \cdots, n-1 ; \nu=n, \cdots), \\ 0, \text { elsewhere on }(-\pi, \pi) . & \end{cases}$
Then $f_{n}(x) \subset L$ on $(-\pi, \pi)$, for

$$
\int_{-\pi}^{\pi}\left|f_{n}(x)\right| d x=2 \sum_{\nu=n}^{\infty} 2^{\nu} a_{\nu}=2 \sum_{\nu=n}^{\infty} 2^{-\nu /(n-1 / 2)}<\infty .
$$

At $x=0, f_{n}(x+t)+f_{n}(x-t)-2 f_{n}(x)=2 f_{n}(t)$. We have

$$
\int_{b_{\nu}}^{b_{\nu}+2\left(a_{\nu} / 2^{n}\right)} f_{n}(t) d t=\int_{b_{\nu}}^{b_{\nu}+a_{\nu} / 2^{n}} f_{n}(t) d t-\int_{b_{\nu}}^{b_{\nu}+a_{\nu} / 2^{n}} f_{n}(t) d t=0
$$

By the definition of $f_{n}(x)$,

$$
f_{n}(t)=-f\left(t-2^{j} \cdot \frac{a_{\nu}}{2^{n}}\right), \quad b_{\nu}+2^{j} \frac{a_{\nu}}{2^{n}}<t \leqq b_{\nu}+2^{j} \frac{a_{\nu}}{2^{n}},
$$

so that by induction

$$
\int_{b_{\nu}}^{b_{\nu}+2^{j}\left(a_{\nu} / 2^{n}\right)} f_{n}(t) d t=0, \quad(1 \leqq j \leqq n)
$$

and therefore, if $b_{\nu}+2^{j}\left(a_{\nu} / 2^{n}\right)<t,(1 \leqq j \leqq n-1)$,

$$
R_{1}\left(f_{n}, t\right)=2 \int_{b_{\nu}+2^{j}\left(\alpha_{\nu} / 2^{n}\right)}^{t} f_{n}(\tau) d \tau
$$

Hence, if $b_{\nu}+2^{j} 2\left(a_{\nu} / 2^{n}\right)<t<b_{\nu}+2^{j} 2\left(a_{\nu} / 2^{n}\right),(0 \leqq j \leqq n-2)$,

$$
R_{1}\left(f_{n}, t\right)=-R_{1}\left(f_{n}, t-2^{j} \cdot 2 \cdot \frac{a_{\nu}}{2^{n}}\right) .
$$

Since

$$
R_{k+1}\left(f_{n}, t\right)=(k+1) \int_{0}^{t} R_{k}\left(f_{n}, \tau\right) d \tau
$$

we see that in the same way, if $t>b_{\nu}$,

$$
\frac{1}{k+1} R_{k+1}\left(f_{n}, t\right)=\int_{b_{\nu}}^{t} R_{k}\left(f_{n}, \tau\right) d \tau
$$

and, for

$$
\begin{gathered}
b_{\nu}+2^{j \cdot 2^{k+1}\left(a_{\nu} / 2^{n}\right)<t<b_{\nu}+2^{j+1} \cdot 2^{k+1}\left(a_{\nu} / 2^{n}\right),(j+k \leqq n-2),} \begin{array}{c}
R_{k+1}\left(f_{n}, t\right)=-R_{k+1}\left(f_{n}, t-2^{j} \cdot 2^{k+1} \cdot \frac{a_{\nu}}{2^{n}}\right)
\end{array}, .
\end{gathered}
$$

Therefore, for $k \leqq n-1$,

$$
\begin{aligned}
R_{k}\left(f_{n}, b_{\nu}+\frac{a_{\nu}}{2^{n}}\right) & =2 k 2^{\nu} \int_{0}^{a_{\nu} / 2^{n}}\left(\frac{a_{\nu}}{2^{n}}-t\right)^{k-1} d t \\
& =2^{\nu+1}\left(\frac{a_{\nu}}{2^{n}}\right)^{k} \neq o\left(2^{\nu k}\right) \quad \text { as } \quad \nu \rightarrow \infty
\end{aligned}
$$

Finally, if $b_{\nu} \leqq t<2^{-\nu}$,

$$
\begin{aligned}
R_{n}\left(f_{n}, t\right) & =2 n \int_{0}^{t} f_{n}(\tau)(t-\tau)^{n-1} d \tau=O\left(2^{\nu} \int_{b_{\nu}}^{t}(t-\tau)^{n-1} d \tau\right) \\
& =O\left(2^{\nu} a_{\nu}{ }^{n}\right)=O\left(2^{\nu} 2^{-n \nu /(n-1 / 2)} 2^{-n \nu}\right)=o\left(2^{-n \nu}\right)=o(t) \text { as } t \rightarrow 0
\end{aligned}
$$

Therefore the function $f_{n}(x)$ has the properties (2) and (3).
3. A Function whose Fourier Series is not Summable (C, α). As we have already mentioned, the Fourier series of $f_{n}(x)$ will be Abel summable at $x=0$. Therefore,

$$
\begin{aligned}
A_{n} & =\underset{0 \leqq r<1}{\text { l.u.b. }} A\left(f_{n}, r\right) \\
& =\underset{0 \leqq r<1}{\text { l.u.b. }} \frac{1}{2 \pi} \int_{0}^{\pi}\left\{f_{n}(x+t)+f_{n}(x-t)-2 f_{n}(x)\right\} \frac{1-r^{2}}{1-2 \cos t+r^{2}} d t
\end{aligned}
$$

will exist. We may define two sequences $\left\{d_{n}\right\}$ and $\left\{t_{n}\right\}$ simultaneously by induction so that

$$
\begin{align*}
& d_{n} \leqq \min \left(\frac{1}{2^{n} A_{n}}, \frac{1}{2^{n}}, \frac{1}{2^{n} \int_{-\pi}^{\pi}\left|f_{n}(t)\right| d t}\right), \tag{4}\\
& d_{n} \leqq \frac{1}{2^{n}} \min _{\nu \leqq n-2}\left(\frac{1}{t_{\nu+1}^{-\nu} R_{\nu}\left(f_{n}, t_{\nu+1}\right)}\right) \text {, } \tag{5}\\
& \left|t_{n}^{-(n-1)} R_{n-1}\left(f_{n}, t_{n}\right)\right|>\frac{n}{d_{n}}, \tag{6}\\
& \left|t_{n}^{-(n-1)} R_{n-1}\left(f_{n}, t_{n}\right)\right|<\frac{1}{n}, \tag{7}\\
& (\nu \leqq n-1) .
\end{align*}
$$

It is clear that d_{n} can be chosen so as to satisfy (4) and (5). It is possible to choose t_{n} satisfying (6) and (7), since

$$
\varlimsup_{t \rightarrow 0}\left|t^{-(n-1)} R_{n-1}\left(f_{n}, t\right)\right|=\infty
$$

and

$$
t^{-\mu} R_{\mu}\left(f_{n}, t\right)=o(1) \quad \text { as } \quad t \rightarrow 0, \quad \text { for } \quad \mu \geqq n
$$

The function

$$
f(x)=\sum_{n=2}^{\infty} d_{n} f_{n}(x)
$$

is integrable, for

$$
\int_{-\pi}^{\pi}|f(x)| d x \leqq \sum_{n=2}^{\infty} d_{n} \int_{-\pi}^{\pi}\left|f_{n}(x)\right| d x \leqq \sum_{n=2}^{\infty} 2^{-n}
$$

The Fourier series of $f(x)$ is Abel summable, since

$$
A(f, r)=\sum_{n=2}^{\infty} d_{n} A\left(f_{n}, r\right)
$$

and $d_{n} A\left(f_{n}, r\right) \leqq 1 / 2^{n}$, and $A\left(f_{n}, r\right) \rightarrow 0$ as $r \rightarrow 1$, which implies that $A(f, r) \rightarrow 0$ as $r \rightarrow 1$.

We shall show that, for every $n, R_{n}(f, t) \neq o\left(t^{n}\right)$, as $t \rightarrow 0$. Let us suppose that, for some $n, R_{n}(f, t)=o\left(t^{n}\right)$, as $t \rightarrow 0$; then, since

$$
R_{n+1}(f, t)=(n+1) \int_{0}^{t} R_{n}(f, \tau) d \tau
$$

there would be a constant K such that for all t and $m \geqq n$ we would have

$$
\begin{equation*}
\left|R_{m}(f, t)\right| \leqq K t^{m} \tag{8}
\end{equation*}
$$

We shall show that for every n

$$
\left|t_{n}^{-(n-1)} R_{n-1}\left(f, t_{n}\right)\right|>n+o(1), \quad \text { as } \quad n \rightarrow \infty
$$

which contradicts (8). We have

$$
\begin{aligned}
t_{n}^{-(n-1)} R_{n-1}\left(f, t_{n}\right)= & \sum_{\nu=2}^{\infty} d_{\nu} t_{n}^{-(n-1)} R_{n-1}\left(f_{\nu}, t_{n}\right) \\
= & \sum_{\nu=2}^{n-1} d_{\nu} t_{n}^{-(n-1)} R_{n-1}\left(f_{\nu}, t_{n}\right)+d_{n} t_{n}^{-(n-1)} R_{n-1}\left(f_{n}, t_{n}\right) \\
& +\sum_{\nu=n+1}^{\infty} d_{\nu} t_{n}^{-(n-1)} R_{n-1}\left(f_{\nu}, t_{n}\right)
\end{aligned}
$$

By (7),

$$
\left|\sum_{\nu=2}^{n-1} d_{\nu} t_{n}^{-(n-1)} R_{n-1}\left(f_{\nu}, t_{n}\right)\right|<\frac{1}{n} \sum_{\nu=2}^{n-1}\left|d_{\nu}\right|=o(1), \quad \text { as } \quad n \rightarrow \infty
$$

and, by (5),

$$
\left|\sum_{\nu=n+1}^{\infty} d_{\nu} t_{n}^{-(n-1)} R_{n-1}\left(f_{\nu}, t_{n}\right)\right| \leqq \sum_{\nu=n+1}^{\infty} 2^{-n}=o(1), \quad \text { as } \quad n \rightarrow \infty
$$

so that, by (6),

$$
\begin{aligned}
\left|t_{n}^{-(n-1)} R_{n-1}\left(f, t_{n}\right)\right| & =\left|d_{n} t_{n}^{-(n-1)} R_{n-1}\left(f_{n}, t_{n}\right)\right|+o(1) \\
& >n+o(1), \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

Therefore by the theorem of Paley the Fourier series of $f(x)$ cannot be (C, α) summable for any α.

Northwestern University

[^0]: * See Landau, Darstellung und Begründung einiger neuer Ergebnisse der Funktionentheorie, 1929, p. 51.
 \dagger R. E. A. C. Paley, On the Cesàro summability of Fourier series and allied series, Proceedings of the Cambridge Philosophical Society, vol. 26 (1929), pp. 173-203.

