ON CERTAIN ARITHMETIC FUNCTIONS OF SEVERAL ARGUMENTS*

BY LEONARD CARLITZ

1. Introduction. Series of the type

$$
\begin{equation*}
\sum_{l, m, n} \beta(l, m, n) \tag{1}
\end{equation*}
$$

summed over all positive l, m, n satisfying the conditions

$$
\begin{equation*}
(m, n)=(n, l)=(l, m)=1 \tag{2}
\end{equation*}
$$

occur in a problem in additive arithmetic. The series (1) is transformed into a series $\sum \gamma(l, m, n)$, now summed over all positive l, m, n, where

$$
\gamma(l, m, n)=\sum_{e, f, \rho=1}^{\infty} \mu(e, f, g) \beta(e l, f m, g n)
$$

The function $\mu(e, f, g)$ may be defined by

$$
\sum \mu(e, f, g)= \begin{cases}1 & \text { for }(m, n)=(n, l)=(l, m)=1 \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

the summation on the left extending over all $e|l, f| m, g \mid n$.
In this note we define a class of functions μ satisfying relations of the type (3); the functions generalize, in several directions, the ordinary Möbius μ-functions. We next define and evaluate a class of generalized ϕ-functions; they may be expressed in terms of μ.
2. The μ-Functions. For arbitrary positive k, s we define the function $\mu^{s}\left(m_{1}, \cdots, m_{k}\right)$ by means of

$$
\sum_{e i \mid m_{i}} \mu^{s}\left(e_{1}, \cdots, e_{k}\right)= \begin{cases}1 & \text { for } M^{s} \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

the k-fold summation on the left extending over all $e_{i} \mid m_{i}$, ($i=1, \cdots, k$), while M^{s} is an abbreviation for the $C_{k, s}$ simultaneous conditions

[^0]$$
\left(m_{i_{1}}, \cdots, m_{i_{s}}\right)=1, \quad\left(i_{1}, \cdots, i_{s}=1, \cdots, k ; i_{a} \neq i_{b}\right)
$$

Evidently by means of (4) μ^{s} may be calculated recursively. The function is symmetric in the k arguments m_{1}, \cdots, m_{k}.

In the case $s=1, M^{s}$ evidently reduces to $m_{i}=1$, and thus

$$
\begin{equation*}
\mu^{1}\left(m_{1}, \cdots, m_{k}\right)=\mu\left(m_{1}\right) \cdots \mu\left(m_{k}\right) \tag{5}
\end{equation*}
$$

where $\mu(e)$ on the right is the ordinary μ-function; for $s>1$, however, no such reduction is in general possible.

From (4) it follows at once that

$$
\begin{equation*}
\mu^{s}(1,1, \cdots, 1)=1 \tag{6}
\end{equation*}
$$

In the next place it is not difficult to show that $\mu^{s}\left(m_{1}, \cdots, m_{k}\right)$ is multiplicative in the k arguments m_{1}, \cdots, m_{k}. An arithmetic function $f\left(m_{1}, \cdots, m_{k}\right)$ is multiplicative provided

$$
\begin{equation*}
f\left(m_{1}, \cdots, m_{k}\right)=\prod_{p} f\left(p^{e_{1}}, \cdots, p^{e k}\right) \tag{7}
\end{equation*}
$$

where p is a typical prime, and

$$
m_{i}=\prod p^{e_{i}}, \quad e_{i}=e_{i}(p) .
$$

Thus the calculation of $\mu^{s}\left(m_{1}, \cdots, m_{k}\right)$ is reduced to the calculation of

$$
\begin{equation*}
\mu^{s}\left(p^{e_{1}}, \cdots, p^{e k}\right) \tag{8}
\end{equation*}
$$

where some of the e_{i} may be equal to 0 . Assume now that some $e_{i}>1$, say $e_{1}>1$. Then comparing (4) for

$$
p^{e_{1}}, p^{e_{2}}, \cdots, p^{e_{k}} \quad \text { with } \quad p^{e_{1}-1}, p^{e_{2}}, \cdots, p^{e_{k}}
$$

leads at once to

$$
\begin{equation*}
\mu^{s}\left(p^{e_{1}}, \cdots, p^{e k}\right)=0 \tag{9}
\end{equation*}
$$

if any $e_{i}>1$. We may therefore suppose in (8) that

$$
e_{i}=1 \quad \text { or } \quad 0, \quad(i=1, \cdots, k)
$$

If $e_{i}=1$ for t values of i, and $e_{i}=0$ for the remaining $k-t$ values, we may use in place of (8) the simplified notation

$$
\begin{equation*}
\mu^{s}\left(p^{t} 1^{k-t}\right) \tag{10}
\end{equation*}
$$

Again, inspection of the defining equation (4) for the values

$$
m_{1}=\cdots=m_{t}=p, \quad m_{t+1}=\cdots=m_{k}=1,
$$

shows that the function (10) is independent of k. We may therefore shorten (10) to $\mu^{s}\left(p^{t}\right)$ or even $\mu^{s}(t)$ when there is no danger of confusion.

To calculate $\mu^{s}\left(p^{t}\right)$ we again use (4). Assume first $t<s$. Thus the conditions M^{s} are surely satisfied. Making use of (6), we show by applying (4) for $t=1,2, \cdots, t$, that

$$
\begin{equation*}
\mu^{s}\left(p^{t}\right)=0 \quad \text { for } \quad t=1, \cdots, s-1 . \tag{11}
\end{equation*}
$$

For $t \geqq s$, the conditions M^{s} are not satisfied. For example, for $t=s$, (4) becomes

$$
\mu^{s}(1)+\mu^{s}\left(p^{s}\right)=0,
$$

so that $\mu^{s}\left(p^{s}\right)=-1$. Generally for $t \geqq s$, (4) implies
(12) $1+C_{t, s} \mu^{s}\left(p^{s}\right)+C_{t, s+1} \mu^{s}\left(p^{s+1}\right)+\cdots+C_{t, t} \mu^{s}\left(p^{t}\right)=0$.

For the moment, put $\mu^{s}\left(p^{t}\right)=y_{t}$; then (12) implies

$$
\sum_{i=0}^{t} C_{t, i} y_{i}=\left\{\begin{array}{lll}
-1 & \text { for } & t=0, \cdots, s-1 \tag{13}\\
0 & \text { for } & t \geqq s .
\end{array}\right.
$$

To solve (13) for y_{i}, we note that

$$
\begin{aligned}
\sum_{t=0}^{w} & (-1)^{w-t} C_{w, t} \sum_{i=0}^{t} C_{t, i} y_{i} \\
& =\sum_{i=0}^{w}(-1)^{w-i} C_{w, i} y_{i} \sum_{t=i}^{w}(-1)^{w-t} C_{w-i, t-i}=y_{w} .
\end{aligned}
$$

Therefore we have

$$
y_{w}=\sum_{t=0}^{s-1}(-1)^{w-t} C_{w, t}=(-1)^{w-s-1} C_{w-1, s-1},
$$

as may be proved by an easy induction on s. Recalling the definition of y_{w}, we see that

$$
\begin{equation*}
\mu^{s}\left(p^{s+t}\right)=(-1)^{t-1} C_{s+t-1, s-1} \quad \text { for } \quad t \geqq 0 . \tag{14}
\end{equation*}
$$

It is now easy to evaluate $\mu^{s}\left(m_{1}, \cdots, m_{k}\right)$ generally. We use (11), (14), and the multiplicative property. Then in the first
place, by (9), μ^{8} vanishes if any s is divisible by the square of a prime. Assume therefore that each m_{i} is the product of distinct primes p_{i}. Put

$$
\begin{equation*}
m_{1} m_{2} \cdots m_{k}=p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{w}^{t_{w}} \tag{15}
\end{equation*}
$$

Then if any $t_{i}<s$, it follows from (11) that $\mu^{s}=0$. If, however, in (15) each $t_{i} \geqq s$, then $\mu^{s} \neq 0$, and is determined by the following formula:

$$
\begin{equation*}
\mu^{s}\left(m_{1}, \cdots, m_{k}\right)=\prod_{i=1}^{w}(-1)^{t_{i}-s-1} C_{t_{i-1, s-1}} \tag{16}
\end{equation*}
$$

which holds generally for all m provided $\mu\left(m_{1}\right) \neq 0, \cdots, \mu\left(m_{k}\right)$ $\neq 0$. Formulas (15) and (16), together with $\mu^{s}\left(m_{1}, \cdots, m_{k}\right)=0$ for $\mu\left(m_{1}\right) \mu\left(m_{2}\right) \cdots \mu\left(m_{k}\right)=0$, determine μ^{s} in all cases.
3. An Application. By means of the general μ^{s}, we may transform the series

$$
\begin{equation*}
\sum_{M^{s}} \beta\left(m_{1}, \cdots, m_{k}\right), \tag{17}
\end{equation*}
$$

summed over all positive m_{i} satisfying the condition M^{s} of (4). Now by (4), the series in (17) equals

$$
\begin{align*}
& \sum_{(m)=1}^{\infty} \beta\left(m_{1}, \cdots, m_{k}\right) \sum_{e \mid m} \mu^{s}\left(e_{1}, \cdots, e_{k}\right) \\
& \quad=\sum_{(m)=1}^{\infty} \sum_{(e)=1}^{\infty} \mu^{s}\left(e_{1}, \cdots, e_{k}\right) \beta\left(e_{1} m_{1}, \cdots, e_{k} m_{k}\right) \tag{18}\\
& \quad=\sum_{(m)=1}^{\infty} \gamma\left(m_{1}, \cdots, m_{k}\right)
\end{align*}
$$

where

$$
\begin{equation*}
\gamma\left(m_{1}, \cdots, m_{k}\right)=\sum_{(e)=1}^{\infty} \mu^{s}\left(e_{1}, \cdots, e_{k}\right) \beta\left(e_{1} m_{1}, \cdots, e_{k} m_{k}\right) . \tag{19}
\end{equation*}
$$

Formulas (18) and (19) effect the transformation.
The example mentioned in the Introduction is the special case $s=2, k=3$.
4. The ϕ-Functions. For arbitrary positive k, s we define the function $\phi^{s}\left(m_{1}, \cdots, m_{k}\right)$ as the number of sets of integers

$$
\left\{e_{1}, \cdots, e_{k}\right\}, \quad e_{i}\left(\bmod m_{i}\right)
$$

for which W^{s} holds; W^{s} is an abbreviation for the $C_{k, s}$ simultaneous conditions

$$
\begin{aligned}
& \left(e_{i_{1}}, \cdots, e_{i_{s}}, m_{i_{1}}, \cdots, m_{i_{s}}\right)=1 \\
& \left(i_{1}, \cdots, i_{s}=1, \cdots, k ; i_{a} \neq i_{b}\right) .
\end{aligned}
$$

Clearly ϕ^{s} is symmetric in the k arguments m_{1}, \cdots, m_{k}. For $s=1, W^{s}$ reduces to $\left(e_{i}, m_{i}\right)=1$, so that

$$
\phi^{1}\left(m_{1}, \cdots, m_{k}\right)=\phi\left(m_{1}\right) \cdots \phi\left(m_{k}\right)
$$

where $\phi(m)$ on the right is the ordinary ϕ-function. In the other extreme case, $s=k$, assume $m_{1}=\cdots=m_{k}$; then clearly

$$
\phi^{k}(m, \cdots, m)=\phi_{k}(m)
$$

where $\phi_{k}(m)$ is Jordan's function. From the definition, it is evident that

$$
\phi^{s}(1,1, \cdots, 1)=1
$$

Secondly it is not difficult to show that ϕ^{s} satisfies (7); in other words, ϕ^{s} is a multiplicative function of m_{1}, \cdots, m_{k}. We proceed to calculate

$$
\begin{equation*}
\phi^{s}\left(p^{e_{i}}, \cdots, p^{e k}\right) . \tag{20}
\end{equation*}
$$

If some $e_{i}>1$, (20) may be reduced further. Thus, if say $e_{1}>1$, it follows from the definition that

$$
\begin{equation*}
\phi^{8}\left(p^{e_{1}}, p^{e_{2}}, \cdots, p^{e_{k}}\right)=p \phi^{s}\left(p^{e_{1}-1}, p^{e_{2}}, \cdots, p^{e_{k}}\right) . \tag{21}
\end{equation*}
$$

It is therefore necessary to calculate the function only in the case $e_{i}=1$ or 0 . Exactly as in $\S 2$, if $e_{i}=1$ for t values and $=0$ for the remaining $k-t$ values, we replace (20) by the simpler notation

$$
\phi^{s}\left(p^{t} 1^{k-t}\right)=\phi^{s}\left(p^{t}\right),
$$

for here again the function in question is easily seen to be independent of k.

The determination of $\phi^{s}\left(p^{t}\right)$ involves no difficulty. It follows from the definition that $\phi^{s}\left(p^{t}\right)=p^{t}$ for $t<s$. For $t \geqq s$, we may show that

$$
\begin{equation*}
\phi^{s}\left(p^{t}\right)=(p-1)^{t-s+1} \sum_{i=0}^{s-1} C_{t-s+i, i} p^{s-1-i} . \tag{22}
\end{equation*}
$$

Indeed, by the definition,

$$
p^{t}-\phi^{s}\left(p^{t}\right)=C_{t, t-s}(p-1)^{t-s}+C_{t, t-s-1}(p-1)^{t-s-1}+\cdots,
$$

so that

$$
\begin{equation*}
\phi^{s}\left(p^{t}\right)=\sum_{i=0}^{s-1} C_{t, i}(p-1)^{t-i} \tag{23}
\end{equation*}
$$

which may be identified with (22).
Again, expanding the right member of (23), we have

$$
\begin{aligned}
\phi^{s}\left(p^{t}\right) & =\sum_{i=t-s+1}^{t} C_{t, i} \sum_{j=0}^{i}(-1)^{i-j} C_{i, j} p^{j} \\
& =\sum_{j=0}^{t} C_{t, j} p^{t-j} \sum_{\substack{i=0 \\
i \geqq j-s+1}}^{j}(-1)^{i} C_{j, i} \\
& =p^{t}+\sum_{j=s}^{t} C_{t, i} p^{t-j} \sum_{i=0}^{s-1}(-1)^{j-i} C_{j, i} \\
& =p^{t}+\sum_{j=s}^{t}(-1)^{j-s-1} C_{j-1, s-1} C_{t, j} p^{t-\jmath} \\
& =p^{t}+\sum_{j=s}^{t} C_{t, j} p^{t-j} \mu^{s}\left(p^{j}\right) \\
& =\sum_{j=0}^{t} C_{t, j} p^{t-j} \mu^{s}\left(p^{j}\right),
\end{aligned}
$$

by (14). Therefore, by (21) and (9),

$$
\phi^{s}\left(p^{e_{1}}, \cdots, p^{e_{k}}\right)=p^{e_{1}+\cdots+e_{k}} \sum_{f_{i} \leqq e_{i}} \frac{\mu^{s}\left(p^{f_{1}}, \cdots, p^{f_{k}}\right)}{p^{f_{1}+\cdots+f_{k}}} .
$$

Finally, since both ϕ^{8} and μ^{8} are multiplicative,

$$
\phi^{s}\left(m_{1}, \cdots, m_{k}\right)=m_{1} \cdots m_{k} \sum_{d_{i} \mid m_{i}} \frac{\mu^{s}\left(d_{1}, \cdots, d_{k}\right)}{d_{1} \cdots d_{k}},
$$

and thus ϕ^{s} is expressed in terms of μ^{s}.
Institute for Advanced Study
and Duke University

[^0]: * Presented to the Society, February 29, 1936.

