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A GENERALIZATION OF SCHWARZ'S LEMMA* 

BY CONSTANTIN CARATHEODORY 

1. Introduction, We consider the family of functions f(z), 
which are regular inside of the unit circle, which vanish at the 
origin, and whose absolute value \f(z)\ is less than one in that 
circle. Taking two points z\ and z2 in the interior of the unit 
circle we inquire about the maximum M(zi, z2) of the expression 

(!) | / ( s « ) - / ( g i ) | 

I 22 — Z\ I 

if f(z) describes the family of functions considered above. 
This maximum can never be less than one, because the func

tion f(z)=z itself is contained among the functions of our 
family. But in a great number of cases M(ziy z2) is exactly equal 
to one. Thus if Z\ is taken equal to zero, the assertion that 
I f (0, z2) = 1 is only another way of formulating the lemma of 
Schwarz. Again, if we assume that the ratio z2/z\ is real and 
negative, we have 

| ƒ « - / ( s i ) | ^ | / ( * i ) | + | / ( s s ) | , 
! z2 — zi I = I zx I + I z21 ; 

and, using the lemma of Schwarz, we find that M(zi, z2) = 1. 
In the third place, we have M(z\, z2) = 1 if both points z± and z2 

lie on the circular disc | z\ rg21/2 — 1. This is an easy consequence 
of the fact that for all points of this figure the expression 
\f{z) | is never greater than one. f We are going to analyze the 
questions which arise from these different examples by de
termining completely all the cases for which M(z\, z2) = 1. 

2. An Auxiliary Function. We begin with the obvious re
mark that our result will not be altered if we neglect from the 
outset all the functions of the form f(z) —ei9z for which the ex-

* From an address delivered before the Society under the title Bounded 
analytic functions, on November 27, 1936, by invitation of the Program Com
mittee. 

t J. Dieudonné, Recherches sur quelques problèmes relatifs aux polynômes et 
aux f onctions bornées d'une variable complexe, Annales de l'Ecole Normale, (3), 
vol. 48 (1931), pp. 247-358; in particular, p. 352, 
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pression (1) is identical ly equal to one. For the remaining func
t ions of our family we can p u t 

(2) ƒ ( * ) = * £ « , with \g(z)\<l, 

and we may introduce the notation 

(3) g(zi) = a. 

T h e function <j>{z) which is defined by the equa t ion 

a - g{z) zi - z 
( 4 ) r 7 T — — — * ( « ) . 

1 — ag{z) 1 — Z\Z 

is regular inside the unit circle; and it is readily seen that, for 
all points of that circle, 

(5) U t o l ^ l . 
Using these formulas, we find 

a(\ - ziz) - Oi - z)<j*(z) 
(6) f(z) = Z • ; 

(1 — z\z) — â(zi — z)(j)(z) 

(7) / (s i ) = zia, 

and finally 

f(z2) — ƒ (zi) a(l — ziz%) + (z2 — acLz^)<t>(z2) 
(8) 

z2 — zi (1 — Z1Z2) — d(zi — Z2)4>(z2) 

Now the function (6) always belongs to our family provided 
\a\ be taken less than one and <j>(z) be a regular analytic func
tion inside the unit circle which satisfies the condition (5). Con
sequently the value of M(zi, z2) can be obtained by calculating 
the maximum of the absolute value of the right-hand side of (8) 
under the conditions 

(9) I a\ < 1, | 0 ( s 2 ) | fg 1. 

For a given value of a, the maximum value of this last expres
sion is attained at some point of the unit circle \<j>\ = 1 , say at 
the point — eiX. But if we multiply both a and </>(s2) by e~iX, 
the absolute value of the right-hand side of (8) remains un
altered. Hence we may also calculate M(zi, z2) as the maximum 
of Ico(a) I for \a\ < 1 , if we define co(a) by the relation 
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a{\ — ziz2) - (z2 - aâzi) 
(10) co (a) 

1 — 1̂̂ 2 + #Xl 

(1 - ziz2) + â(zi - 22) 

which we obtain from (8) by putting $(02) = — 1 . 

3. 4̂ Necessary and Sufficient Condition. We remark that we 
may write 

, 4. a{\ — Z1Z2 + âzi) — z2 

(11) co (a) = — > 
(1 — 2i22 + azi) — dz2 

and that, with the notation 

z2 
(12) 

co takes the form 

a ~ u 
(13) w = _ 

1 — âw 
The absolute value of this last expression is always greater than 
one for \u\ > 1 , equal to one for \u\ = 1 , and less than one for 
\u\ < 1 . This well known fact may be shown also by the 
formula 

1 - I col2 1 - l a l 2 

(14) — p - ï - = L> > 0. 
1 — I w 12 \ 1 — au\2 

We have therefore the following result: if for some value of a 
(with \a\ <1) the value (12) of u has a modulus greater than 
one, we shall have, for this same value of a, 

(15) I co I > 1, 

and consequently M(z\, z2) > 1 will hold. But if, for all values of 
\a\ < 1, we always have \u\ g 1, it follows that we shall always 
have also |co| ^ 1 , and M(zi, 22) = 1. A necessary and sufficient 
condition that we shall have M(zi, z2) = 1 is therefore given by 
the inequality 

(16) I z21 g I 1 — ziz2 + âzi I, for | a \ < 1. 

This being the case, the circle around the origin with radius | z2\ 
has no point in common with the interior of the circle of center 
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1 —Z\%2 and radius | Z\\. Conversely, the inequality (16) will hold 
if these circles have no common point interior to both. Conse
quently the condition (16) may also be written in the form 

(17) | Zi| + | 22 | ^ | 1 — ZiZ%\, 

that is, in a form in which the parameter a is no 1onger involved. 

4. Simplification of the Condition. This last inequality can be 
replaced by another which, although equivalent to it, is much 
simpler in form. Squaring both sides of (17), we get the condition 

(18) | z\ |2 + | z21
2 + 2 | zi | | z21 S 1 ~ z\z2 — Ziz2 + | z\ |21 z2 |2, 

which is exactly equivalent to it. From the inequality 

(19) — l\z2 — z\z2 S 2 | z\ | | z21, 

which is always true for all pairs of points JSJ, z2 for which (18) 
(or (17)) holds, it then follows that we must have 

(20) (1 — | ^i |2)(1 - | s 2 | 2 ) è 0. 

It is therefore impossible that one of the points be outside and 
the other inside the unit circle, and a condition that none of 
these points be outside the unit circle is given by the inequality 

(21) I *i I I *21 S 1. 

Adding now to the members of (18) those of the identity 

(22) | zi + z21
2 = | zi |2 + | z21

2 + ziz2 + zxz2, 

and then reducing, we obtain 

(23) | Z l + ^2 | 2 ^ (1 - | 2122 | ) 2 . 

If (21) holds, this is equivalent to 

(24) | 2! + 22 | + | 2i22 | ^ 1 . 

This last relation expresses therefore the condition that (17) and 
(21) hold simultaneously. Whenever it is satisfied, we need not 
state that the points Z\ and z2 do not lie outside the unit circle. 
This most elegant form of the inequality (17) was pointed out 
to me by Szegö; it shows at first sight the symmetry in z\ and. z2 

of the condition obtained. 
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5. Proof of Sufficiency of a Related Condition. Take now two 
points Z\ and z2 inside of the unit circle, for which (24) or the 
equivalent condition (17) holds; suppose also that 

(25) a ^ p < 1. 

We are going to show that under these assumptions the expres
sion (1) cannot exceed a number which is actually less than 
one. We conclude first by the reasoning of §2 that any number 
which is not smaller than the upper bound of \o)(a) | under the 
condition (25) is suitable for our purpose. 

Using (25) and (17), we have 

(26) 
1 — Z\z2 + az\ I ^ I 1 — Z\Z21 — p I z\ I 

^ ( 1 — P) I Zl I + I 2 2 I 

and consequently, by (12), 

I 22 
(27) u\ ^ 

(1 - p) Zi + 22 

1 -
( 1 - P ) | * l | 

(1 ~™ p) I Zl I + I 32 I 
< 1. 

Both numbers | a | and \u\ 
the well known inequality 

being not greater than one, we have 

o(a) = 

(28) au 
< 

a\ -\-\u\ 

l + \a\ 

= 1 
(1 — 1 ^| )(1 — 1 ^| ) 

" l + | a [ | « | 

Replacing in this inequality \a\ and \u\ by their upper bounds 
from (25) and (27), we get finally 

(29) o(a) g I 

and we can therefore write 

I f M - M) 
(30) 

Z2 — Zi 
< 1 

(1 - p ) 2 | 2 l J _ 

(1 — p) I zi I + (1 + P) I z21 

(i - P ) 2 M 

(1 - p)Ui| + (i + p)\z7\ 

6. Statement of the Theorem. We infer from this last result that 
the only functions f{z) of our family for which, under the as
sumption of (24), the expression (1) attains its maximum value 
one are precisely those which we discarded at the beginning of 

file://-/-/u/
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§2. This completes our proof and we can state the following 
theorem. 

THEOREM. For every pair of points z\, z2 lying inside the unit 
circle and satisfying the condition 

(3D Z\ + 22 + Z\Z2 ^ 1 , 

and for every analytic function f(z) which is regular for \z\ < 1, 
which vanishes at the origin, and which fulfills the conditions 
\f(z) I < 1 everywhere in the circle, we always have 

(32) 
ƒ(**) - M ) 

2 2 Z\ 
< 1 , 

except for the case where f(z) is a linear function of the form, eiez. 
For every pair of points Z\, z2 inside of the unit circle for which 

(S3) Zi + Z2\ +\ ZiZ2 I > 1 , 

there exist, on the contrary, analytic f unctions satisfying all of the 
above conditions for which the left-hand side of (32) has values 
greater than unity. 

Taking Zi^O, and using the relation (30), we can replace the 
inequality (32) by another one that is more accurate. We remark 
for this purpose that we can take, in (30), 

(34) a = 
M) 

3 l 

and that therefore we may write 

I f M ~ M) 

(35) 

1 -

> 

22 Z\ 

(1211 - l / ( * l ) l ) 2 

21 I ( I 2! I ~ I /(Sx) I ) + I Z2 | ( | Zl I + I /(«i) I ) 

This last inequality involves the following one, in which \z2\ 
does not appear on the right side : 

(36) 1 
ƒ(*») - /(«i) 

2 2 Zl 
> 

(I ai I - | M ) | ) 2 

« l | ( l + | « l | ) + | / ( 8 l ) | ( l - | « l | ) 
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(37) 1 
/fe) - f(zi) 

22 — Z\ 
> 

( Ui \f(zi)\y 

2\zi 

Finally, if we assume that | z2\ S | Si|, we can replace this last 
inequality by the following stronger one, which we obtain di
rectly from (35) : 

(38) 1 -
/te) - M) 

22 Zl 2 V I si 1/ 

7. The Geometric Meaning. In order to find the geometric 
meaning of the condition (31), we take Z\ = h, where h is real, 
positive, and less than one; and we put Z2~x-\-iy. We can then 
write 

(39) ((x + h)2 + y2)1'2 ^ 1 - h(x2 + y2)1'2. 

Squaring both sides of this last inequality, we get, after some 
reductions, 

(40) 2h(x2 + y2)1'2 S (1 - h2){\ - x2 - y2) - 2hx, 

and this leads to the relation 

(41) [(1 - h2){\ - x2 - y2) - 2hx]2 - U2(x2 + y2) è 0. 

Since the expression on the left side of (41) is positive at the 
origin as well as on circles x2+y2 — R2 for large values of R, and 
is negative on the circle 

(42) (1 - h2){x2 + y2 - 1) + 2hx = 0, 

the curve which is represented by 

(43) [(1 - h2)(x2 + y2 - 1) + 2hx]2 - U2(x2 + y2) = 0 

consists of two loops, one of which lies inside of the circle (42) 
and the other outside of the same circle. On the unit circle 
x2+y2 = 1, the left side of (43) has the value 

U2(x2 - 1) ^ 0, 

which shows that the unit circle also divides both loops. 
It follows finally that the inner loop of the curve (43) divides 

the unit circle into two regions. In the one of these regions, 
which is convex, the condition z-\-h\ + \zh\ < 1 is fulfilled. The 
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boundary of this region, which we shall call A, touches the unit 
circle at the point x— —1, y~0. In the second region B, which 
is horn-shaped, we have |z + fe| + |s&| > 1 . 

8. The Curve whose Stereo graphic Projection is the Curve (43). 
Since the curve (43) is bicircular, that is, since it has the circular 
points at infinity as double points, it is convenient to consider 
it as the stereographic projection of a spherical curve. The 
stereographic projection of the sphere 

1 
(44) ? + rj2 + f2 = — 

4 
on the plane with the coordinates x and y is defined by the 
formulas 

(A<\ * V 2 . 2 * + *" 
(45) x = > y — > xz + y2 = 

_ j- _ j- „ J" 
With these new variables, the equation (43) takes the form 

k2 

(46) h2e + 2A(1 - h2)tf + (1 - h2 + A4)f2 = 
4 

The spherical curve with which we have to deal consists there
fore of the intersection of the sphere (44) with the elliptic cylin
der (46). 

We introduce the new rectangular coordinates £; and f' by 
the formulas 

(47) $ = £' cos 4> + f' sin 0 , f - - g' sin cj> + f' cos </>, 

1 # A 
(48) cos ó = ; sin ó = — 

(1 + A2)1/2 (1 + A2)1/2 

The equation (46) then takes the form 

1 1 
(49) # ! £ ' 2 - f _ f / 2 

h2 4 
T h e p a r t of this curve which corresponds to the inner loop of 
the bicircular curve (43) is de te rmined by the inequali t ies 

1 1 - h 
(50) g £' g , f' ^ 

2(1 + A2)1'2 ~ "" 2(1 + F)1/2 " 2(1 + h2) 1/2 
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9. Osculating Circles at the Vertices of the Curve (43). Using 
these formulas, we can obtain readily all of the properties of the 
curve (43) which are important for the problem we are consider
ing. Thus we can show that, when h increases from zero to one, 
the region A shrinks continuously; for small values of h, this re
gion fills nearly the whole of the unit circle; if h tends towards 
one, this region reduces to a narrow band which surrounds the 
radius extending from — 1 to the center. 

As an example of such computations we shall determine the 
osculating circles at the four vertices of the boundary of the 
region A, that is, at the four points in which the osculating 
circles do not cross the curve. 

Two of these points correspond to the end-points of the arc 
(50) of the ellipse (49). If we determine the tangents to the el
lipse at these points and the segments of these tangents lying 
inside the circle 

(51) £'2 + f/2 = „; n = o, 
4 

the stereographic projections of these segments coincide with di
ameters of the osculating circles for which we are looking. We 
find in this way that the diameters of these circles are given by 
the formulas 

1 - h - h2 

(52) - 1 < x < ; y = 0, 
~ 1 + h - h2 

1 - ¥> 1 - h 
(53) S xS ; y =0. 

\ + ¥ 1 + h 
We can also write the equations of the circles themselves; we 
find 
(54) (1 + h - h2)(x2 + y2) + 2hx - (1 - h - h2) = 0 

for the circle with the diameter (52), and 

(1 + h*)(x2 + y2) + 2A(1 - A)(l + h3)x 

- (1 - h)2(\ + h2 + h*) - 0 

for the other circle. 
The two other vertices of the bicircular curve correspond to 



240 CONSTANTIN CARATHEODORY [April, 

the vertex £' = 0, f ' = —h/2 of the ellipse (49), and are symmet
ric with respect to the x axis. The osculating circle passing 
through that point is the stereographic projection of a circle on 
the sphere. Putting 

(56) u = f ' + — 

and determining two suitable constants p and q, we see that 
this circle lies on the plane 

FIG. 1 

(57) 2r) = pu + q. 

Using (56), we can write the equation of the ellipse (49) in the 
form 

(58) 4A4£/2 - 4hu + 4u2 = 0, 

and we see that the intersection of the sphere (44) with the 
plane (57) has the form 

(59) 4£'2 + (pu + qY + (2« - h)2 = 1. 

The curves (59) and (58) osculate at the point u = 0 if we have 

(60) q = ± (1 - h2)l'\ - Wpq = 2A(1 - A4). 

This gives for the equation of the two circles of osculation in the 
original variables 
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h*yi*(h(x* + y2 + 1)) 

+ (1 + h2)1/2(2hx + O 2 + y2 - 1)) ± 2hzy = 0. 

It is very easy to sketch the bicircular curve which forms the 
boundary of the region A after the circles (54), (55), and (61) 
have been drawn; indeed, both circles (54) and (55) lie com
pletely inside the region A. Both circles (61) surround A and a 
rather large arc on each of these circles may be considered as 
coinciding with the boundary of A. In Figs. 1 and 2, these 
circles have been drawn first for the case h = 2112 — 1, in which 
the point z = h lies on the boundary of the region A, and sec
ondly for h2 = 2112 — 1, in which case the circles (61) have radii of 
minimum value. 
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