A NOTE ON MATRICES DEFINING TOTAL REAL FIELDS*

BY A. A. ALBERT

Let K be algebraic of degree n over a sub-field F of the field of all real numbers. Then there is an equation

$$
\begin{equation*}
f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0, \quad\left(a_{i} \text { in } F\right) \tag{1}
\end{equation*}
$$

which is irreducible in F, and $K=F(X)$ consists of all polynomials with coefficients in F in an algebraic quantity X for which $f(x)=0$. We call K a total real field over F if the ordinary complex roots

$$
\begin{equation*}
x_{1}, \cdots, x_{n} \tag{2}
\end{equation*}
$$

of $f(x)=0$ are all real. The modern theory of algebraic numbers has made the study of such fields of great interest.

A particular algebraic root of $f(x)=0$ is given by the matrix

$$
Y=\left(\begin{array}{cccc}
0 & 0 \cdots & \cdots & -a_{n} \tag{3}\\
1 & 0 \cdots & 0 & -a_{n-1} \\
0 & 1 \cdots & 0 & -a_{n-2} \\
. & \cdots \cdot & \cdot \\
0 & 0 \cdots 1 & -a_{1}
\end{array}\right)
$$

This is a matrix whose characteristic equation is the above $f(x)=0$. The irreducibility of $f(x)$ implies that every n-rowed square matrix Z with elements in F and $f(x)=0$ as characteristic equation is similar to Y, and thus every such Z defines a field $F(Z)$ equivalent to K over F.

We shall obtain a normal form here for Z such that every Z in our form and with irreducible characteristic equation defines a total real field, while conversely every total real field is defined by one of our matrices. Our result will then provide a construction of all total real fields over F. The irreducibility condition is of course a part of the final conditions in all problems on the construction of algebraic fields and should not be considered as

[^0]affecting the completeness of our criterion. We shall in fact prove the following theorem.

Theorem. Let D be an n-rowed diagonal matrix with positive diagonal elements in F, and S be any symmetric n-rowed square matrix with elements in F for which the characteristic function of

$$
\begin{equation*}
Z=D S \tag{4}
\end{equation*}
$$

is irreducible in F. Then $F(Z)$ is a total real field of degree n over F. Conversely every total real field K of degree n over F is equivalent to a field $F(Z)$ with Z given by (4).

For if D and E are the n-rowed diagonal matrices*

$$
\begin{equation*}
D=\operatorname{diag}\left\{d_{1}, \cdots, d_{n}\right\}, e_{i}=d_{i}^{1 / 2}, E=\operatorname{diag}\left\{e_{1}, \cdots, e_{n}\right\} \tag{5}
\end{equation*}
$$

then $D=E^{2}, E=E^{\prime}$ is a real symmetric matrix,

$$
E^{-1} Z E=E^{-1} E^{2} S E=E S E^{\prime}
$$

is a real symmetric matrix. Thus the characteristic roots of $E^{-1} Z E$ are all real. But they are the roots of the characteristic equation of Z and we are assuming that this equation is irreducible in F. Hence $F(Z)$ is a total real field.

Conversely let K be total real of degree n over F so that K is equivalent over F to $F(Y)$ with Y given by (3). We let V be the Vandermonde matrix

$$
\left(\begin{array}{cccc}
1 & x_{1} \cdots & x_{1}^{n-1} \tag{6}\\
1 & x_{2} & \cdots & x_{2}^{n-1} \\
\cdot & \cdot & \cdots & \cdot \\
1 & x_{n} & \cdots & x_{n}^{n-1}
\end{array}\right)
$$

The square of the determinant of V is the discriminant of $f(x)$ and is not zero when $f(x)$ is irreducible in F. This is our hypothesis, so that the matrix

$$
\begin{equation*}
T=V^{\prime} V=\left(s_{i+j-2}\right), \quad(i, j=1, \cdots, n) \tag{7}
\end{equation*}
$$

is non-singular. Also the symmetric function $s_{k}=\sum_{g=1}^{n} x_{g}^{k}$ is well known to be a polynomial in a_{1}, \cdots, a_{n} with integral coeffi-

[^1]cients, so that T has elements in F. Since V is a real non-singular matrix, the matrix $T=V^{\prime} V$ is positive definite symmetric. This is actually the true reason for our result.*

There exists a non-singular B with elements in F such that

$$
B^{\prime} T B=\left(\begin{array}{lll}
g_{1} & & \tag{8}\\
& \cdot & \\
& \cdot & \\
& & g_{n}
\end{array}\right), \quad\left(g_{i} \text { in } F^{\prime}\right)
$$

Since T is positive definite, so is $B^{\prime} T B$, and the g_{i} must be positive. Thus

$$
\begin{equation*}
D=\operatorname{diag}\left\{d_{1}, \cdots, d_{n}\right\}, \quad d_{i}=g_{i}^{-1}>0, D^{-1}=B^{\prime} T B \tag{9}
\end{equation*}
$$

By an elementary computation

$$
\begin{equation*}
V Y V^{-1}=\operatorname{diag}\left\{x_{1}, \cdots, x_{n}\right\} \tag{10}
\end{equation*}
$$

The diagonal matrix $V Y V^{-1}$ is symmetric and

$$
\begin{equation*}
\left(V Y V^{-1}\right)^{\prime}=\left(V^{\prime}\right)^{-1} V^{\prime} V^{\prime}=V Y V^{-1}, \quad\left(V^{\prime} V\right) Y=Y^{\prime}\left(V^{\prime} V\right) \tag{11}
\end{equation*}
$$

Hence $T Y=Y^{\prime} T$, $\left(B^{\prime} T B\right) B^{-1} Y B=B^{\prime} Y^{\prime}\left(B^{\prime}\right)^{-1} B^{\prime} T^{\prime} B$, whence

$$
\begin{equation*}
D^{-1} Z=Z^{\prime}\left(D^{-1}\right)^{\prime}, \quad Z=B^{-1} Y B \tag{12}
\end{equation*}
$$

The matrix $S=D^{-1} Z$ is now symmetric since $S^{\prime}=Z^{\prime}\left(D^{-1}\right)^{\prime}=S$. Then

$$
Z=D S
$$

as desired, and our theorem is proved.
Notice in closing that the positive elements of the matrix l) are the inverses of the elements in the diagonal normal form of the discriminant matrix T. When this normal form of T is the identity matrix the result Z is a symmetric matrix S for which the total reality of $F(Z)$ is a classical result. \dagger

The University of Chicago

[^2]
[^0]: * Presented to the Society, December 31, 1936.

[^1]: * We use the notation diag $\left\{d_{1}, \cdots, d_{n}\right\}$ to mean an n-rowed square matrix whose elements off the principal diagonal are zero and whose principal diagonal is d_{1}, \cdots, d_{n}.

[^2]: * See Bieberbach-Bauer, Vorlesungen über Algebra, 1933, p. 184, for the known theorem stating that T is positive definite when $f(x)=0$ has all real roots. That this result is true is an evident consequence of the definition of positive definiteness.
 \dagger See L. E. Dickson, Modern Algebraic Theories, 1926, p. 76; Theorem 12.

