ON CERTAIN CONFIGURATIONS OF POINTS IN SPACE AND LINEAR SYSTEMS OF SURFACES WITH THESE AS BASE POINTS*

BY ARNOLD EMCH

1. Introduction. Configurations of this sort in connection with certain surfaces are known in large numbers. For example, the vertices of the 45 triangles formed by the 27 lines on a general cubic surface; the 12 vertices of 3 desmic tetrahedra; the 24 double points of the 6 quintic cycles of the symmetric collineation group on five variables interpreted in S_{3}; the G_{18} group of points which I found on a new normal form of the cubic surface, \dagger and so on.

In this paper I shall establish two new configurations of points and investigate their properties and some of the surfaces on these points.
2. The G_{27} of W-Points. This configuration is defined by the system of points W

$$
\begin{equation*}
W=\left(\omega^{\alpha}, \omega^{\beta}, \omega^{\gamma}, 1\right), \quad \omega^{3}=1, \quad \alpha, \beta, \gamma \equiv 0,1,2,(\bmod 3) \tag{1}
\end{equation*}
$$

which yields the group G_{27} of 27 points W. Consider now any of the W 's and two more of the set as follows:

$$
\begin{aligned}
& W_{0}=\left(\omega^{\alpha}, \quad \omega^{\beta}, \quad \omega^{\gamma}, \quad 1\right) \\
& W_{1}=\left(\omega^{\alpha+1}, \omega^{\beta+1}, \omega^{\gamma+1}, 1\right) \\
& W_{2}=\left(\omega^{\alpha+2}, \omega^{\beta+2}, \omega^{\gamma+2}, 1\right) .
\end{aligned}
$$

Subtracting corresponding coordinates of these three points, say $\left(W_{0}-W_{1}\right),\left(W_{1}-W_{2}\right),\left(W_{2}-W_{0}\right)$, and dividing in each case by $(1-\omega)$, we obtain the point $V\left(\omega^{\alpha}, \omega^{\beta}, \omega^{\gamma}, 0\right)$. The cross-ratio of the four points is

$$
\left(V W_{0} W_{1} W_{2}\right)=\left(\infty, \omega^{\alpha}, \omega^{\alpha+1}, \omega^{\alpha+2}\right)=\left(\infty, 1, \omega, \omega^{2}\right)=-\omega^{2}
$$

Theorem 1. Every V-point is collinear with three W-points. The cross-ratio of these four points is equianharmonic.

[^0]Next, consider any of the A_{i}, say $A_{1}(1,0,0,0)$, and the triples of points

The points of each of these triples are collinear with A_{1}. Moreover the cross-ratio of A_{1} and any of the triples is $\left(\infty, 1, \omega, \omega^{2}\right)=$ $-\omega^{2}$. Taking account of the symmetry of the G_{27} we may state the following theorem.

Theorem 2. The 27 W -points lie 4 times on 9 lines through the A_{i} 's, each line containing 3 of the W 's. The cross-ratio of each A_{i} and 3 collinear W 's is equianharmonic. Through every W there are 4 such lines of collinearity.
3. Surfaces on the G_{27}. It is clear that

$$
\begin{aligned}
& F=\sum C_{a b c d e f}\left(x_{1}^{3}-x_{2}^{3}\right)^{a}\left(x_{1}^{3}-x_{3}^{3}\right)^{b}\left(x_{1}^{3}-x_{4}^{3}\right)^{c}\left(x_{2}^{3}-x_{3}^{3}\right)^{d} \\
& \cdot\left(x_{2}^{3}-x_{4}^{3}\right)^{e}\left(x_{3}^{3}-x_{4}^{3}\right)^{f} X_{a b c d e f}^{(o)}=0,
\end{aligned}
$$

where the X 's are quaternary forms of degree g, with $a+b$ $+c+d+e+f=m$ (constant), is a surface of order $3 m+g$ with the points of the G_{27} as base points. The simplest form of this kind is $C_{1}\left(x_{1}^{3}-x_{2}^{3}\right)+C_{2}\left(x_{1}{ }^{3}-x_{3}{ }^{3}\right)+C_{3}\left(x_{1}^{3}-x_{4}{ }^{3}\right)+C_{4}\left(x_{2}^{3}-x_{3}{ }^{3}\right)$ $+C_{5}\left(x_{2}^{3}-x_{4}^{3}\right)+C_{6}\left(x_{3}{ }^{3}-x_{4}^{3}\right)=0$. By properly relabeling the coefficients of F, this can be put into the simpler form

$$
F_{3}=a_{1} x_{1}^{3}+a_{2} x_{2}^{3}+a_{3} x_{3}^{3}+a_{4} x_{4}^{3}=0,
$$

with $a_{1}+a_{2}+a_{3}+a_{4}=0$. Among these are four cubic cones with the A_{i} 's as vertices. For example, when $a_{4}=0$, and $a_{1}+a_{2}+a_{3}=0$, or $a_{1}=\alpha_{2}-\alpha_{3}, a_{2}=\alpha_{3}-\alpha_{1}, a_{3}=\alpha_{1}-\alpha_{2}$, we have the cubic cone

$$
\left(\alpha_{2}-\alpha_{3}\right) x_{1}^{3}+\left(\alpha_{3}-\alpha_{1}\right) x_{2}^{3}+\left(\alpha_{1}-\alpha_{2}\right) x_{3}^{3}=0
$$

which depends on one effective constant. This agrees with the fact established before that the 27 W 's lie by 3 on 9 lines through A_{1}. The result may be stated as the following theorem.

Theorem 3. The cubics on the G_{27} form a linear system of dimension two, or a net. A mong these are four cubic cones with the A_{i} 's as vertices. The 9 lines through an A_{i}, containing the $27 W^{\prime}$ s, form an associated system of lines of a pencil of cubic cones with the common vertex A_{i}. The G_{27} is an associated set of base points of the net of cubics.

Among the quartic F-surfaces may be mentioned in particular

$$
F_{4}=\sum\left(a_{i j k} x_{k}+a_{i j l} x_{l}\right)\left(x_{i}{ }^{3}-x_{j}{ }^{3}\right)=0,
$$

in which i, j, k, l are $1,2,3,4$ taken in any order. F_{4} depends apparently on 12 homogeneous constants, and so does

$$
\begin{aligned}
F_{4}^{\prime}= & \left(a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}\right) x_{1}^{3}+\left(b_{1} x_{1}+b_{3} x_{3}+b_{4} x_{4}\right) x_{2}{ }^{3} \\
& +\left(c_{1} x_{1}+c_{2} x_{2}+c_{4} x_{4}\right) x_{3}^{3}+\left(d_{1} x_{1}+d_{2} x_{2}+d_{3} x_{3}\right) x_{4}{ }^{3}=0 .
\end{aligned}
$$

But for F_{4}^{\prime} to be of the form F_{4}, it is clear that all the coefficients of F_{4}^{\prime} cannot be independent. In fact it is easily seen that the four identities must exist: $b_{1}+c_{1}+d_{1}=0, a_{2}+c_{2}+d_{2}=0$, $a_{3}+b_{3}+d_{3}=0, a_{4}+b_{4}+c_{4}=0$. From this follows our next theorem.

Theorem 4. The quartics F_{4} form a linear system of dimension 7 , which may be written in the form

$$
\begin{aligned}
& \left\{\left(\beta_{1}-\beta_{3}\right) x_{2}+\left(\gamma_{1}-\gamma_{2}\right) x_{3}+\left(\delta_{2}-\delta_{3}\right) x_{4}\right\} x_{1}^{3} \\
& \quad+\left\{\left(\alpha_{2}-\alpha_{3}\right) x_{1}+\left(\gamma_{2}-\gamma_{4}\right) x_{3}+\left(\delta_{3}-\delta_{1}\right) x_{4}\right\} x_{2}^{3} \\
& \quad+\left\{\left(\alpha_{3}-\alpha_{4}\right) x_{1}+\left(\beta_{3}-\beta_{4}\right) x_{2}+\left(\delta_{1}-\delta_{2}\right) x_{4}\right\} x_{3}^{3} \\
& \quad+\left\{\left(\alpha_{4}-\alpha_{2}\right) x_{1}+\left(\beta_{4}-\beta_{1}\right) x_{2}+\left(\gamma_{4}-\gamma_{1}\right) x_{3}\right\} x_{4}^{3}=0 .
\end{aligned}
$$

The tangent planes to such an F_{4} at the A_{i} 's are concurrent.
Without going into a classification and extended discussion of surfaces on the G_{27} we conclude this section by the construction of the symmetric sextic

$$
F_{6}=\sum\left(x_{i}{ }^{3}-x_{k}^{3}\right)^{2}=0, \quad(i \neq k)
$$

Denoting the elementary symmetric functions on the variables by $\phi_{1}=\sum x_{i}, \phi_{2}=\sum x_{i} x_{k}, \phi_{3}=\sum x_{i} x_{k} x_{l}, \phi_{4}=x_{1} x_{2} x_{3} x_{4}$, we find that F_{6} has the form

$$
\begin{array}{r}
F_{6}=3 \phi_{1}{ }^{6}-18 \phi_{1}{ }^{4} \phi_{2}+18 \phi_{1}{ }^{3} \phi_{3}+27 \phi_{1}{ }^{2} \phi_{2}{ }^{2}-24 \phi_{1}{ }^{2} \phi_{4}-30 \phi_{1} \phi_{2} \phi_{3} \\
+24 \phi_{2} \phi_{4}-8 \phi_{2}{ }^{3}+3 \phi_{3}{ }^{2}=0 .
\end{array}
$$

Dividing through by $\phi_{1}{ }^{6}$ and setting $x=\phi_{2} / \phi_{1}{ }^{2}, y=\phi_{3} / \phi_{1}{ }^{3}$, $z=\phi_{4} / \phi_{1}{ }^{4}$, we map F_{6} upon the cubic monoid

$$
24 z(x-1)-8 x^{3}-30 x y+27 x^{2}+3 y^{2}-18 x+18 y+3=0
$$

that is, upon a rational surface. As the mapping is birational, we have the following result.

Theorem 5. The sextic $\sum\left(x_{i}{ }^{3}-x_{k}^{3}\right)^{2}=0$ is rational and has the points of the G_{27} as double points.
4. The G_{36} of V-Points. In the plane of the triangle $A_{1} A_{2} A_{3}$ consider the syzygetic pencil of cubics $x_{1}^{3}+x_{2}^{3}+x_{3}^{3}-6 \lambda x_{1} x_{2} x_{3}=0$, and the 12 vertices of the four flex triangles, among which are the three vertices $A_{1}(1,0,0), A_{2}(0,1,0), A_{3}(0,0,1)$. When we exclude these, there remain $9 V$-points, defined by $V\left(\omega^{\alpha}, \omega^{\beta}, \omega^{\gamma}, 0\right)$, $\alpha, \beta, \gamma \equiv 0,1,2(\bmod 3)$. In a similar way we find $9 V$-points in the remaining coordinate planes, hence, altogether 36 V 's. A property of these points has already been stated in Theorem 1. There are 27 planes of the type

$$
\omega^{\alpha} x_{1}+\omega^{\beta} x_{2}+\omega^{\gamma} x_{3}+x_{4}=0
$$

on each of which we find 8 V 's. For example, on the plane $x_{1}+\omega x_{2}+\omega^{2} x_{3}+x_{4}=0$ lie

$$
\begin{array}{llll}
(0,1,1,1), & (\omega, 0,1,1), & (\omega, \omega, 1,1), & (1,1,1,0) \\
\left(0, \omega, \omega^{2}, 1\right), & \left(\omega^{2}, 0, \omega^{2}, 1\right), & \left(\omega^{2}, 1,0,1\right), & \left(1, \omega, \omega^{2}, 0\right)
\end{array}
$$

They also lie on a conic cut out on the plane by the quadric $\omega x_{1} x_{2}+\omega^{2} x_{1} x_{3}+x_{1} x_{4}+\omega^{2} x_{3} x_{4}+\omega x_{2} x_{4}+x_{2} x_{3}=0$. A point V, say ($1, \omega, \omega^{2}, 0$), lies on 6 planes,
$x_{1}+x_{2}+x_{3}+x_{4}=0, \quad x_{1}+\omega x_{2}+\omega^{2} x_{3}+x_{4}=0$,
$\omega x_{1}+\omega x_{2}+\omega x_{3}+x_{4}=0, \quad \omega^{2} x_{1}+\omega^{2} x_{2}+\omega^{2} x_{3}+x_{4}=0$,
$\omega x_{1}+\omega^{2} x_{2}+x_{3}+x_{4}=0, \quad \omega^{2} x_{1}+x_{2}+\omega x_{3}+x_{4}=0$.
Theorem 6. The 36 V 's lie by 8 on 27 conics in 27 planes. Through each V pass 6 of these planes and one of the 36 lines through the A_{i} 's containing each 3 of the W 's.

As before we may again set up linear systems of surfaces on the G_{36} (including the A_{i} 's), and eventually on the G_{36} and the $G_{27 .}$. We shall restrict ourselves to one particularly interesting example of a septimic which cuts the faces of the coordinate
tetrahedron outside its edges each in a Caporali quartic, and contains both the G_{27} and the G_{36}.

$$
\begin{aligned}
F_{7} & =x_{1} x_{2} x_{3}\left\{a_{14} x_{1}\left(x_{2}^{3}-x_{3}^{3}\right)+a_{24} x_{2}\left(x_{3}^{3}-x_{1}^{3}\right)+a_{34} x_{3}\left(x_{1}^{3}-x_{2}{ }^{3}\right)\right\} \\
& +x_{1} x_{2} x_{4}\left\{a_{13} x_{1}\left(x_{2}^{3}-x_{4}^{3}\right)+a_{23} x_{2}\left(x_{4}^{3}-x_{1}^{3}\right)+a_{43} x_{4}\left(x_{1}^{3}-x_{2}^{3}\right)\right\} \\
& +x_{1} x_{3} x_{4}\left\{a_{12} x_{1}\left(x_{3}^{3}-x_{4}^{3}\right)+a_{32} x_{3}\left(x_{4}^{3}-x_{1}^{3}\right)+a_{42} x_{4}\left(x_{1}^{3}-x_{3}^{3}\right)\right\} \\
& +x_{2} x_{3} x_{4}\left\{a_{21} x_{2}\left(x_{3}^{3}-x_{4}^{3}\right)+a_{31} x_{3}\left(x_{4}^{3}-x_{2}^{3}\right)+a_{41} x_{4}\left(x_{2}^{3}-x_{3}^{3}\right)\right\}=0 .
\end{aligned}
$$

It has the A_{i} 's as triple points and the $\overline{A_{i} A_{k}}$ as single lines.
University of Illinors

EINSTEIN SPACES OF CLASS ONE*

BY C. B. ALLENDOERFER

1. Introduction. An Einstein space is defined as a Riemann space for which

$$
\begin{equation*}
R_{\alpha \beta}=\frac{R}{n} g_{\alpha \beta} \tag{1}
\end{equation*}
$$

We assume the first fundamental form

$$
\begin{equation*}
d s^{2}=g_{\alpha \beta} d x^{\alpha} d x^{\beta} \tag{2}
\end{equation*}
$$

to be non-singular, but do not restrict ourselves to the positive definite case. An $n+1$ dimensional space is said to be flat when its first fundamental form can be reduced to \dagger

$$
\begin{equation*}
d s^{2}=\sum_{i=1}^{n+1} c_{i}\left(d x^{i}\right)^{2}, \tag{3}
\end{equation*}
$$

where the c_{i} are definitely plus one or minus one. An n dimensional Riemann space which is not flat is said to be of class one if it can be imbedded in an $n+1$ dimensional flat space. The purpose of this paper is to determine necessary and sufficient conditions that an Einstein space be of class one.

There is no problem when $n=2$, for then every space which

[^1]
[^0]: * Presented to the Society, November 28, 1936.
 \dagger American Journal of Mathematics, vol. 53 (1931), pp. 902-910.

[^1]: * Presented to the Society, September 3, 1936.
 \dagger Throughout this paper Latin indices will have the range 1 to $n+1$; Greek indices the range 1 to n.

