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AN ARITHMETIC FUNCTION 

BY LEONARD CARLITZ 

1. Introduction. The function* 

(1) \p(k,ni) = X) M O V S 
st=k 

where /JL(S) is the Möbius function, has the property 

(2) x//(k, m) = 0 (mod k), 

for arbitrary integral m. Gegenbauerf has generalized this by 
replacing n(s) by an arbitrary integral-valued function w(s) for 
which 

(3) X w(s) = 0 (mod jfe), 
s|fc 

for all k. Clearly (3) holds for the function JJL(S). Since (1) is 
equivalent to 

s\k 

we put 

(4) W(k,m) = ^2 ^{^m1 = ^ w(s)\//(e,m)= ^2^(eJm)Ylw(s) 
st=k ade—k te—k s\t 

and therefore by (2) and (3), 

(5) W(k,m) = 0 (mod k), 

for all m. Conversely it is easy to show, by an induction on ky 

that (5) implies (3). Indeed, if (3) holds for all integers <&, 
it follows from (4) and (5) that 

(̂1> m) ]C WW = W S WM = 0 (mod k). 
s | fc s I k 

Since this must hold for all m, we may select an m prime to k, 
and therefore we have (3). 

* For references see Dickson's History of the Theory of Numbers, vol. 1, 
pp. 84-86. Cited as Dickson. 

f See Dickson, p. 86. 
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2. The Generalized Function. In the right member of (1) re
place ml by an arbitrary integral-valued function g(t)y and 
define 

(6) Hk) = Hk,g) = E/*(*)g(0. 
sl=k 

From the definition it follows at once that 

and for (h, k) = 1, 

We shall now show that 

(7) \P(k) s 0 (mod jfe) 

for all integers & if and only if 

(8) g ( ^ ) s g ( ^ ) ( m o d # ' ) 

for all primes £ and all integers /. Clearly we may assume in (8) 
that p\t. Then if we write k=peK, where p\K, it is easily seen 
that (6) implies 

(9) tfrk) = 2 ix{s){g{pn) - g(p<~H)}. 
st-=k 

This shows that if (8) holds, then ^(&) = 0 (mod pe) for every £e 

that divides k. Hence (8) is certainly a sufficient condition. 
Interchanging K and t in (9), and then inverting, we get 

g(p°K) - g(pe~lk) = T,Hpes), 
s\k 

from which it follows that (8) is also a necessary condition that 
(7) hold. Note that if (8) holds for each of two functions, it 
holds also for their product. 

If now we replace the n(s) of (6) by an integral-valued func
tion w(s) for which (3) is satisfied, we may define 

W(k) = W(k, g) = E *>(s)g(t) 
st=k 

as generalizing ^(fe, g). Then as above, 
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w(k,g) = E^ ,« ) I» ( J ) , 
st—k d\t 

and therefore if (7) and (3) hold, it follows that 

(10) W(k,g) = 0 (mod k). 

Conversely it can be proved that (10) and (7) imply (3); simi
larly (10) and (3) imply (7). 

3. Connection with Irreducible Polynomials. As is well known, 
if in (1) we put m = pn, the power of a prime, the resulting func
tion \J/(k, pn) is k times the number of irreducible polynomials 
of degree k in a single indeterminate, and with coefficients in 
the Galois field GF(pn). More generally, the number of irreduci
ble factorable polynomials* in GF(pn), 

h h 

G = I J (a/o + oLjiXi + • • • + aj8x8\, H a/s ^ 0, 

is 5K*, ƒ>"•)/*. 
In the case of the general function ^(è) =ip{h, g), for which 

(7) is assumed to hold, we consider a set of polynomials M with 
coefficients in a field (the precise nature of which need not be 
defined). The degree of M is assumed defined; the number of 
polynomials M of fixed degree m will be denoted by f(m), 
/(O) = 1. It is assumed that M can be factored into a product of 
powers of irreducible polynomials (of the set) in essentially one 
way. If \f/(k)/k be the number of irreducible polynomials P of 
degree fe, we shall show that 

m 

(11) mf(m) = Z f (s) \f{m - s) + f(m - 2s) + • • • } , 
8 = 1 

or what is the same thing, 

m 

(12) mj{m) = Y, g(s)f(m - s). 
8=1 

We put 

(13) F(m) = T[ M, ö(w) = I I P9 
deg M=m deg P=m 

* Duke Mathematical Journal, vol. 2 (1936), pp. 660-670. 
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so that F (in) is the product of all the polynomials of degree m, 
®(m) the product of the irreducible polynomials. To express 
F(m) in terms of ©, let 

M = PeA , P\A , 

where P is of degree s, say. Then by (13), 

(14) F(m) = n ^ e ^ - e s ( p ) , 

the product extending over all P, e such that esi^m, and 4>k(P) 
denotes the number of polynomials of degree k, not divisible 
by P . Evidently 

= <ƒ(*) for * < , , 

V(*) - / ( * - *) f°r * *̂• 
Thus (14) becomes 

F(m) = TT pS«e^n-««(P)' 
P 

the exponent in the right member is 

{f(m - s) - f(m - 2s)} + 2 {f(m - 2s) - f(m - 3s)} + • • • 

+ rf(m — rs) = f(m — s) + f(m — 2s) + • * * + f(m — rs), 

where r= [rn/s], the greatest integer ^m/s. Grouping together 
all P of equal degree, we have finally 

m 

(15) F (m) = I I {©(s)}^-s>+---+^-™>. 
s = l 

Comparison of the degree of the two members of (15) leads to 
m r 

mf(m) = X) ̂ (5) S f(m ~ es) 

= Z) t(s)f(tn - es) 
es^m 

= Z ƒ(» - *) Z *M 

= t,f(m- k)g(k), 
J f c = l 

so that we have proved both (11) and (12). 
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4. The L.C.M. Property. In the paper previously referred to, 
the following formula appears incidentally: 

(i6) E M*, pnwt, p») = Hk,p2n), 
[s,t]=k 

the summation on the left extending over all s, t with least 
common multiple equal to k. This formula may be proved very 
easily; indeed it follows at once from a formula due to von 
Sterneck.* 

Let giim), gi(m) denote arbitrary arithmetic functions, and 
g(m) =gi(m)g2(rn). Then for \f/(k, g) as defined by (6), von 
Sterneck's formula is 

(17) E 4>(s,gi)fKt,ga) = * ( * , g ) . 
[s,t]=k 

To prove this, consider the equivalent formula 

(is) E E *(*, sùHt, g*) = E M, g) • 
k\m [s,t]—k k\m 

The summation conditions on the left are equivalent to s\m, 
t\ m, that is, s and t independently ranging over the divisors of 
m. Thus we have 

E t(s, gi) E lK*> g2) = gi{ni)g2(m) = E Hk, gig2), 
s\m t\m k\m 

which proves (18), and therefore (17). 
If in (17) we take 

gi(s) = ms, g2(s) = ns, 

the formula becomes 

E *P(S> #0M> n) = t(k, tnn), 
[s,t]=k 

a direct generalization of (16). 
Formula (17) may be generalized to the case of m functions 

gU ' ' ' , gm, g = glg2 ' ' ' gm, 

E lK*l, gl) ' — lK*m, gm) = f(k9 g) , 

* See Dickson, p. 151. For details of the L.C.M. calculus, see D. H. Lehmer, 
American Journal of Mathematics, vol. 53 (1931), pp. 843-854. 
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the summation extending over all sets Si, • • • , sm, with least 
common multiple equal to 1. 

5. A Polynomial Analog of \f/(k). It is easy to define analogs 
of \p(k) having the property (2). For example, for an algebraic 
field, we have* 

<K™, P) = 2 M(ct)0n(b) = 0 (mod m), 
ab=m 

where nt is an ideal and /3 an integer in the field. 
We now define an analog in the domain of polynomials in a 

single indeterminate, with coefficients in a GF(pn) : 

(19) *{M,G) = I ^ ) C l » l . 

Here fx(A) is the Möbius function for the polynomial domain, 
and the absolute value \ B | is defined by 

\B\= p n h , b = d e g £ . 

Then it is easy to show that 

(20) t(M, G) = 0 (mod M), 

for arbitrary polynomials G. For M irreducible, (20) reduces to 
Fermat's theorem. 

More generally if g{M) is a function of the polynomial M 
whose values are polynomials in GF(pn), we may define 

*(M,g) = E / i ( 4 ) g ( 5 ) , 
AB=M 

and prove, exactly as above, that \p(M, g ) = 0 (mod M) if and 
only if 

g(PeM) = giP^M) (mod Pe). 

Generally speaking, all our results for \f/(m, g) carry over to the 
polynomial ^(ikf, g). In particular this is true of the L.C.M. 
property. The one exception is §3 ; there seems to be no connec
tion between \I/(M, G) and classes of irreducible polynomials. 

D U K E UNIVERSITY 

* Due to J. Westlund; see Dickson, p. 86. 


