the integrals taken so that the boundary C is traversed in the positive sense. Series (15) converges uniformly for x in every closed region in \mathcal{L}, and is therefore valid for all x in \mathcal{L}.

From this we obtain the following result.
Theorem 2.* The series

$$
\begin{equation*}
y(x)=\sum_{n=0}^{\infty} f_{n} \frac{x^{n}}{n!} \tag{17}
\end{equation*}
$$

converges in a circle of radius exceeding 1/2, and in some neighborhood of $x=-1 / 2$ the function $y(x)$ is a solution of the equation

$$
\begin{equation*}
\Delta y(x)=F(x) \tag{1}
\end{equation*}
$$

Pennsylvania State College

ON THE SUMMABILITY BY POSITIVE TYPICAL MEANS OF SEQUENCES $\{f(n \theta)\} \dagger$

BY M. S. ROBERTSON

1. Introduction. In a recent paper \ddagger the author required an inequality for the expression

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}|\sin k \theta| \leqq \frac{1}{\pi} \int_{0}^{\pi}|\sin \theta| d \theta=\frac{2}{\pi} \tag{1}
\end{equation*}
$$

which apparently is due to T. Gronwall.§ This inequality suggests immediately the question: For what functions $f(\theta)$, defined in the interval $(-\pi, \pi)$, are we permitted to write

$$
\begin{equation*}
F(\theta ; f) \equiv \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f(k \theta) \leqq \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) d \theta ? \tag{2}
\end{equation*}
$$

More generally, we may ask: For what functions $f(\theta)$ and sequences $\left\{a_{n}\right\}$ of positive numbers is the following true:

[^0]\[

$$
\begin{equation*}
M(\theta ; f) \equiv \lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{i j} f(k \theta) \cdot\left(\sum_{1}^{n} a_{k}\right)^{-1} \leqq \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) d \theta \text { ? } \tag{3}
\end{equation*}
$$

\]

It is the purpose of this paper to answer these questions in part by giving sufficiency conditions when the function $f(\theta)$ possesses a uniformly converging Fourier series. It will be evident from the discussion to follow that the inequality (2) is not true for all integrable functions $f(\theta)$.
2. An Expansion Formula for $M(\theta ; f)$. We shall adopt the following notation. Let $f(\theta)$ be an integrable function in the sense of Lebesgue, defined over the interval $-\pi \leqq \theta \leqq \pi$, and periodic outside of this interval, whose Fourier series

$$
\begin{equation*}
f(\theta) \sim c_{0}+\sum_{1}^{\infty}\left(b_{m} \sin m \theta+c_{m} \cos m \theta\right) \tag{4}
\end{equation*}
$$

converges uniformly in the closed interval $-\pi \leqq \theta \leqq \pi$. Let $\left\{a_{n}\right\}$ be any sequence of non-negative real numbers. Let

$$
\begin{align*}
& \bar{P}(\theta) \equiv \varlimsup_{n \rightarrow \infty} P_{n}(\theta) \equiv \varlimsup_{n \rightarrow \infty} \sum_{k=1}^{n} a_{k} \cos k \theta \cdot\left(\sum_{1}^{n} a_{k}\right)^{-1} \tag{5}\\
& \bar{Q}(\theta) \equiv \varlimsup_{n \rightarrow \infty} Q_{n}(\theta)=\varlimsup_{n \rightarrow \infty} \sum_{k=1}^{n} a_{k} \sin k \theta \cdot\left(\sum_{1}^{n} a_{k}\right)^{-1} \tag{6}
\end{align*}
$$

We may denote by $\underline{P}(\theta)$ and $\underline{Q}(\theta)$ the corresponding functions obtained by taking inferior limits. If $\bar{P}(\theta) \equiv \underline{P}(\theta)$, we denote each simply by $P(\theta)$. A similar remark holds for $Q(\theta)$. Let

$$
\begin{align*}
& \bar{M}(\theta ; f) \equiv \varlimsup_{n \rightarrow \infty} M_{n}(\theta) \equiv \varlimsup_{n \rightarrow \infty} \sum_{k=1}^{n} a_{k} f(k \theta) \cdot\left(\sum_{1}^{n} a_{k}\right)^{-1} \tag{7}\\
& \underline{M}(\theta ; f)=\varlimsup_{n \rightarrow \infty} M_{n}(\theta) \tag{8}
\end{align*}
$$

With this notation, we obtain an infinite series for $\bar{M}(\theta ; f)$:

$$
\begin{aligned}
& M_{n}(\theta) \cdot \sum_{1}^{n} a_{k}=c_{0} \cdot \sum_{1}^{n} a_{k}+\sum_{k=1}^{n} a_{k}\left(\sum_{m=1}^{\infty} b_{m} \sin m k \theta+c_{m} \cos m k \theta\right) \\
& =c_{0} \cdot \sum_{1}^{n} a_{k}+\sum_{m=1}^{\infty}\left[b_{m}\left(\sum_{k=1}^{n} a_{k} \sin m k \theta\right)+c_{m}\left(\sum_{k=1}^{n} a_{k} \cos m k \theta\right)\right]
\end{aligned}
$$

$$
\begin{equation*}
M_{n}(\theta)=c_{0}+\sum_{m=1}^{\infty}\left(b_{m} Q_{n}(m \theta)+c_{m} P_{n}(m \theta)\right) \tag{9}
\end{equation*}
$$

Since the Fourier series (4) converges uniformly for $-\pi \leqq \theta \leqq \pi$, given $\epsilon>0$, we can choose $N(\epsilon)$ sufficiently large so that, for all θ and k,

$$
\left|\sum_{m=N+1}^{\infty}\left(b_{m} \sin m k \theta+c_{m} \cos m k \theta\right)\right|<\epsilon .
$$

Hence

$$
\begin{aligned}
\sum_{k=1}^{n} a_{k} \cdot \mid & \sum_{m=N+1}^{\infty}\left(b_{m} Q_{n}(m \theta)+c_{m} P_{n}(m \theta)\right) \mid \\
& =\left|\sum_{m=N+1}^{\infty}\left[b_{m}\left(\sum_{k=1}^{n} a_{k} \sin m k \theta\right)+c_{m}\left(\sum_{k=1}^{n} a_{k} \cos k \theta\right)\right]\right| \\
& =\left|\sum_{k=1}^{n} a_{k}\left(\sum_{N+1}^{\infty}\left(b_{m} \sin m k \theta+c_{m} \cos m k \theta\right)\right)\right|<\epsilon \cdot \sum_{1}^{n} a_{k}
\end{aligned}
$$

Consequently we have, for all θ and n,

$$
\begin{equation*}
\left|\sum_{m=N+1}^{\infty}\left(b_{m} Q_{n}(m \theta)+c_{m} P_{n}(m \theta)\right)\right|<\epsilon . \tag{10}
\end{equation*}
$$

On account of (10), we obtain from (9) in passing to the limit,

$$
\begin{align*}
& \bar{M}(\theta ; f)=c_{0}+\sum_{m=1}^{\infty}\left(b_{m} \bar{Q}(m \theta)+c_{m} \bar{P}(m \theta)\right) \tag{11}\\
& \underline{M}(\theta ; f)=c_{0}+\sum_{m=1}^{\infty}\left(b_{m} \underline{Q}(m \theta)+c_{m} \underline{P}(m \theta)\right) \tag{12}
\end{align*}
$$

These two series are uniformly convergent for all θ since (10) holds for all n. If it should happen that

$$
\bar{Q}(\theta) \equiv \underline{Q}(\theta) \equiv Q(\theta), \quad \bar{P}(\theta) \equiv \underline{P}(\theta) \equiv P(\theta)
$$

then the limit in (3) will exist.
If we make the substitution in (11) and (12) for the Fourier coefficients, ($m \geqq 1$),

$$
\begin{equation*}
b_{m}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\phi) \sin m \phi d \phi, \quad c_{m}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\phi) \cos m \phi d \phi \tag{13}
\end{equation*}
$$

and invert the order of integration and summation which is permissible since the series is uniformly convergent in θ, we find

$$
\begin{align*}
& \bar{M}(\theta ; f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\phi) \bar{g}(\theta, \phi) d \phi, \tag{14}\\
& \underline{M}(\theta ; f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\phi) \underline{g}(\theta, \phi) d \phi, \tag{15}
\end{align*}
$$

where

$$
\begin{equation*}
\bar{g}(\theta, \phi) \equiv \frac{1}{2}+\sum_{m=1}^{\infty}(\bar{Q}(m \theta) \cdot \sin m \phi+\bar{P}(m \theta) \cdot \cos m \phi) \tag{16}
\end{equation*}
$$

is uniformly convergent in θ and ϕ, and where $g(\theta, \phi)$ has the corresponding definition in terms of $\underline{Q}(\theta)$ and $\underline{P}(\theta)$. If $\bar{g}(\theta, \phi)$ $\equiv g\left(\theta_{1}, \phi\right) \equiv g(\theta, \phi)$ for all θ and ϕ, we can be sure that $M(\theta ; f)$ in (3) exists.

If $\bar{Q}(\theta) \equiv Q(\theta) \equiv Q(\theta), \bar{P}(\theta) \equiv \underline{P}(\theta) \equiv P(\theta)$, then it is seen from (11) and (12) that the necessary and sufficient condition for the inequality expressed in (3) is that the function

$$
\begin{equation*}
\phi(\theta)=\sum_{m=1}^{\infty}\left(b_{m} Q(m \theta)+c_{m} P(m \theta)\right) \tag{17}
\end{equation*}
$$

should be non-positive for all values of θ.
3. The Functions $P(\theta)$ and $Q(\theta)$ for Special Sequences $\left\{a_{n}\right\}$. Let us now consider a more restricted class of sequences $\left\{a_{n}\right\}$ satisfying the following conditions:
(18a) The sequence $\left\{a_{n}\right\}$ of non-negative numbers a_{n} is to be composed of two subsequences $\left\{a_{2 n+1}\right\}$ and $\left\{a_{2 n}\right\}$ each of which is monotone (either non-increasing or non-decreasing).

$$
\begin{gather*}
\mu_{n} \equiv \sum_{1}^{n} a_{k} \text { diverges to }+\infty \text { with } \lim _{n \rightarrow \infty} \mu_{n} / \mu_{n-1}=1 \tag{18b}\\
\lim _{n \rightarrow \infty} \mu_{n}^{-1} \cdot \sum_{k=1}^{n}(-1)^{k} a_{k}=a, \quad(-1 \leqq a \leqq 1) . \tag{18c}
\end{gather*}
$$

With sequences $\left\{a_{n}\right\}$ of this latter type we can find $P(\theta)$ and $Q(\theta)$. For $\theta \neq k \pi$, (k an integer), we have the identity

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k} \sin k \theta=(2 \sin \theta)^{-1} \tag{19}
\end{equation*}
$$

$$
\left\{\sum_{k=1}^{n}\left(a_{k+1}-a_{k-1}\right) \cos k \theta+a_{1}-a_{n+1} \cos n \theta-a_{n} \cos (n+1) \theta\right\}
$$

Hence

$$
\begin{aligned}
& \varlimsup_{n \rightarrow \infty}\left|Q_{n}(\theta)\right| \\
& \quad \leqq(2 \sin \theta)^{-1}\left\{\varlimsup_{n \rightarrow \infty} \mu_{n}^{-1}\left(\sum_{k=1}^{n}\left|a_{k+1}-a_{k-1}\right|+a_{1}+a_{n+1}+a_{n}\right)\right\} \\
& \leqq(2 \sin \theta)^{-1}\left\{\varlimsup_{n \rightarrow \infty} \frac{2\left(a_{1}+a_{2}+a_{n}+a_{n+1}\right)}{\mu_{n}}\right\}=0
\end{aligned}
$$

by (18a) and (18b). It follows that

$$
\bar{Q}(\theta) \equiv \underline{Q}(\theta) \equiv Q(\theta) \equiv 0 .
$$

Again, for $\theta \neq k \pi$, we have the identity

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k} \cos k \theta=(2 \sin \theta)^{-1} \tag{20}
\end{equation*}
$$

$$
\cdot\left\{\sum_{k=1}^{n}\left(a_{k+1}-a_{k-1}\right) \sin k \theta+a_{1}-a_{n+1} \sin n \theta-a_{n} \sin (n+1) \theta\right\}
$$

from which we obtain

$$
\bar{P}(\theta) \equiv \underline{P}(\theta) \equiv P(\theta) \equiv 0
$$

for $\theta \neq k \pi$. If $\theta=2 p \pi$, (p an integer), evidently $P(\theta)=1$. If $\theta=(2 p+1) \pi, P(\theta)=a$ on account of (18c).

Substituting these values for $P(\theta)$ and $Q(\theta)$ in (11) or (12), we have the following values for $M(\theta ; f)$ of (3) :
(21a) $\frac{\theta}{\pi}$ irrational, $\quad M(\theta ; f)=c_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) d \theta$.
(21b) $\frac{\theta}{\pi}=\frac{2 r}{s}$, where r and s are integers, $(2 r, s)=1$,

$$
M\left(\frac{2 r \pi}{s} ; f\right)=c_{0}+\sum_{m=1}^{\infty} c_{m s}
$$

$$
=\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta)\left\{\frac{\sin (2 n+1) \frac{s \theta}{2}}{\sin \frac{s \theta}{2}}\right\} d \theta
$$

(21c) $\frac{\theta}{\pi}=\frac{2 r+1}{s}, \quad(2 r+1, s)=1$,

$$
M\left(\frac{2 r+1}{s} \pi ; f\right)=c_{0}+a \sum_{m=1}^{\infty} c_{(2 m-1) s}+\sum_{m=1}^{\infty} c_{2 m s}
$$

$$
=\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta)\left\{\frac{\sin (2 n+1) s \theta+2 a \sin n s \theta \cdot \cos n s \theta}{\sin s \theta}\right\} d \theta
$$

Hence for sequences of the type (18) the necessary and sufficient condition for the inequality (3) is that

$$
\begin{align*}
& \sum_{m=1}^{\infty} c_{m s} \leqq 0 \quad \text { for all odd positive integers } s, \text { and } \\
& \sum_{m=1}^{\infty} c_{2 m s}+a \sum_{m=1}^{\infty} c_{(2 m-1) s} \leqq 0 \quad \text { for all positive integers } s \tag{22}
\end{align*}
$$

A sufficient condition for (22) is $c_{m} \leqq 0$ for $m=1,2,3, \cdots$. In particular if $f(\theta)$ is an even function convex for $0 \leqq \theta \leqq \pi$, it is well known that its Fourier series is of the form

$$
f(\theta) \sim c_{0}+\sum_{1}^{\infty} c_{2 m} \cos 2 m \theta
$$

where $c_{2 m} \leqq 0$, and where the series converges uniformly in the closed interval $0 \leqq \theta \leqq \pi$. Hence for sequences of type (18) and any even convex function $f(\theta)$, (3) and (1) are true. In particular, if $f(\theta)=|\sin \theta|$, we obtain (1).

Yale University

[^0]: * See Transactions of this Society, loc. cit., p. 359.
 \dagger Presented to the Society, April 11, 1936.
 \ddagger See M. S. Robertson, On the coefficients of a typically-real function, this Bulletin, vol. 41 (1935), p. 569.
 § See Transactions of this Society, vol. 13 (1912), pp. 445-468.

