SOME FORMULAS FOR FACTORABLE POLYNOMIALS IN SEVERAL INDETERMINATES \dagger

BY LEONARD CARLITZ

1. Introduction. By a factorable polynomial \ddagger in the $G F\left(p^{n}\right)$ will be meant a polynomial in the indeterminates x_{1}, \cdots, x_{k}, which factors into a product of linear factors in some (sufficiently large) Galois field :

$$
G \equiv G\left(x_{1}, \cdots, x_{k}\right) \equiv \prod_{j=1}^{m}\left(\alpha_{j 0}+\alpha_{j 1} x_{1}+\cdots+\alpha_{j k} x_{k}\right)
$$

It is frequently convenient to consider separately those G (of degree m) in which $x_{k^{m}}^{m}$ (or any assigned x_{i}^{m}) actually occurs; we use the notation G^{*} to denote such a polynomial. In the case $k=1$, the polynomials G reduce to ordinary polynomials in a single indeterminate; in this case G and G^{*} are identical.

In this note we extend certain results§ for $k=1$ to the case $k>1$. For polynomials G^{*} the extensions may (roughly) be obtained by merely replacing p^{n} by $p^{n k}$; for arbitrary G the generalizations are not quite so simple.
2. The μ-Function. For G of degree m, we put $|G|=p^{n m}$; then

$$
\begin{align*}
\zeta^{*}(w) & =\sum_{G^{*}} \frac{1}{|G|^{w}}=\left(1-p^{n(k-w)}\right)^{-1} \tag{1}\\
\zeta(w) & =\sum_{G} \frac{1}{|G|^{w}} \\
& =\left\{\left(1-p^{n(1-w)}\right)\left(1-p^{n(2-w)}\right) \cdots\left(1-p^{n(k-w)}\right)\right\}^{-1},
\end{align*}
$$

the sums extending over all G^{*}, G, respectively.
Let $f(m)$ be the number of (non-associated) G of degree $m, f^{*}(m)$ the number of G^{*}; from the first of these formulas it follows that $f^{*}(m)=p^{n k m}$, and from the second, $f(m)=[k+m-1, m] p^{n m}$, where
\dagger Presented to the Society, December 31, 1936.
\ddagger Duke Mathematical Journal, vol. 2 (1936), pp. 660-670.
§ American Journal of Mathematics, vol. 54 (1932), pp. 39-50; this Bulletin, vol. 38 (1932), pp. 736-744.

$$
\begin{equation*}
[k, s]=\frac{\left(p^{k n}-1\right)\left(p^{(k-1) n}-1\right) \cdots\left(p^{(k-s+1) n}-1\right)}{\left(p^{n}-1\right)\left(p^{2 n}-1\right) \cdots\left(p^{s n}-1\right)} \tag{3}
\end{equation*}
$$

Taking the reciprocal of (1) and (2), we have

$$
\begin{align*}
& \sum_{G^{*}} \frac{\mu(G)}{|G|^{w}}=1-p^{n(k-w)} \tag{4}\\
& \sum_{G} \frac{\left.\mu^{\prime} G\right)}{|G|^{w}}=\prod_{j=1}^{k}\left(1-p^{n(j-w)}\right) \tag{5}
\end{align*}
$$

where $\mu(G)$ is the Möbius function. From (4) it follows that

$$
\sum_{\operatorname{deg}} \sum_{G^{*}=m} \mu(G)=\left\{\begin{array}{rr}
-p^{n k} & \text { for } m=1 \\
0 & \text { for } m>1
\end{array}\right.
$$

on the other hand, from (5) follows

$$
\sum_{\operatorname{deg} G=m} \mu(G)=\left\{\begin{array}{cl}
(-1)^{m}[k, m] p^{n m(m+1) / 2} & \text { for } m \leqq k \\
0 & \text { for } m>k
\end{array}\right.
$$

where $[k, m]$ is defined by (3).
3. The Divisor Functions. If $\tau(G)$ denotes the number of divisors of G, then it is clear from (1) that

$$
\begin{equation*}
\sum_{G^{*}} \frac{\tau(G)}{|G|^{w}}=\left(1-p^{n(k-w)}\right)^{-2}, \tag{6}
\end{equation*}
$$

while from (2) it follows that

$$
\begin{equation*}
\sum_{G} \frac{\tau(G)}{|G|^{w}}=\prod_{j=1}^{k}\left(1-p^{n(j-w)}\right)^{-2} \tag{7}
\end{equation*}
$$

From (6) we have at once

$$
\sum_{\operatorname{deg} G^{*}=m} \tau(G)=(m+1) p^{n m k} .
$$

Similarly by means of (7), we may evaluate $\sum \tau(G)$, summed over all G of degree m :

$$
\sum_{\operatorname{deg} G=m} \tau(G)=\sum_{m=i+j}[k+i-1, i][k+j-i, j] p^{n m} .
$$

For the function $\sigma_{t}(G)=\sum|D|^{t}$, summed over all divisors of G, there are the formulas

$$
\begin{equation*}
\sum_{G} \frac{\left.\sigma_{t}^{\prime} G\right)}{|G|^{w}}=\zeta(w) \zeta(w-t), \quad \sum_{G^{*}} \frac{\left.\sigma_{t}^{\prime} G\right)}{|G|^{w}}=\zeta^{*}(w) \zeta^{*}(w-t) . \tag{8}
\end{equation*}
$$

From the latter it is clear that

$$
\sum_{\operatorname{deg}} \sigma_{G^{*}=m}(G)=p^{n k m} \frac{p^{n t(m+1)}-1}{p^{n t}-1}
$$

The corresponding formula for $\sum \sigma_{t}(G)$, summed over all G of degree m, is not so simple in general. However, if $t=k$, the product $\zeta(w) \zeta(w-k)$ is itself a zeta-function, and thus we get from the first equation in (8)

$$
\sum_{\operatorname{deg} G=m} \sigma_{k}(G)=[2 k+m-1, m] p^{n m}
$$

4. The ϕ-Functions. Obviously, the Euler ϕ-function cannot be defined in terms of a reduced residue system. Instead we define $\phi_{s}(G)$ as the number of polynomials A of degree s such that $(A, G)=1$. For $k=1, s=\operatorname{deg} G, \phi_{s}(G)$ reduces to the Euler function (for polynomials in a single indeterminate). From the definition it is easily seen that

$$
\sum_{s=0}^{\infty} \phi_{s}(G) p^{-n s w}=\sum_{(A, G)=1}|A|^{-w}=\zeta(w) \prod_{P \mid G}\left(1-|P|^{-w}\right)
$$

and therefore, by equating coefficients of $p^{-n s w}$,

$$
\begin{equation*}
\phi_{s}(G)=\sum_{D \backslash G}^{\prime} \mu(D) f(s-d), \tag{9}
\end{equation*}
$$

where $d=\operatorname{deg} D$, and the sum is over all divisors of degree $\leqq s$. For $s \geqq \operatorname{deg} G$, the sum is over all D; for $s=\operatorname{deg} G$, we shall omit the subscript, so that

$$
\begin{equation*}
\phi(G)=\sum_{D \backslash G} \mu(D) f(s-d), \tag{10}
\end{equation*}
$$

summed over all divisors of G.
Similarly, $\phi_{s}^{*}(G)$ is the number of A^{*} of degree s such that $(A, G)=1$. Then

$$
\begin{equation*}
\phi_{s}^{*}(G)=\sum_{D \mid G}^{\prime} \mu(D) f^{*}(s-d)=|G|^{k} \sum_{D \mid G}^{\prime} \mu(D)|D|^{-k} \tag{11}
\end{equation*}
$$

Again for $s=\operatorname{deg} G$, we write simply $\phi^{*}(G)$, and we have

$$
\begin{equation*}
\phi^{*}(G)=|G|^{k} \sum_{D \backslash G} \mu(D)|D|^{-k}=|G|^{k} \prod_{P \backslash G}\left(1-|P|^{-k}\right), \tag{12}
\end{equation*}
$$

where P denotes a typical irreducible divisor of G.
For $\phi^{*}(G)$ the sum function (taken over G^{*}) is quite simple. Substituting from (12), we find

$$
\begin{align*}
\sum_{G^{*}} \frac{\phi^{*}(G)}{G^{w}} & =\sum_{D^{*}} \frac{\mu(D)}{|D|^{w}} \sum_{E^{*}} \frac{|E|^{k}}{|E|^{w}}=\frac{\zeta^{*}(w-k)}{\zeta^{*}(w)} \tag{13}\\
& =\left(1-p^{n(k-w)}\right) \sum_{j=0}^{\infty} p^{n j(2 k-w)}
\end{align*}
$$

and therefore

$$
\begin{equation*}
\sum_{\operatorname{deg}} \phi_{G^{*}=m}^{*}(G)=p^{2 n m k}-p^{n k(2 m-1)} \quad \text { for } \quad m \geqq 1 \tag{14}
\end{equation*}
$$

In the second place, we may extend the sum in the left member of (13) over all G :

$$
\sum_{G} \frac{\phi^{*}(G)}{|G|^{w}}=\sum_{D} \frac{\mu(D)}{|D|^{w}} \sum_{E} \frac{|E|^{k}}{|E|^{w}}=\frac{\zeta(w-k)}{\zeta(w)}
$$

from which follows

$$
\sum_{\operatorname{deg} G=m} \phi^{*}(G)=\sum_{m=i+j}(-1)^{t}[k, i][k+j-1, j] p^{n(k+1) j} p^{n i(i+1) / 2}
$$

For $\phi(G)$ the formulas corresponding to (13) and (14) are

$$
\begin{equation*}
\sum_{G^{*}} \frac{\phi^{\prime}(G)}{|G|^{w}}=\sum_{D^{*}} \frac{\mu(D)}{|D|^{w}} \sum_{E^{*}} \frac{f(e)}{|E|^{w}}=\frac{\zeta(w-k)}{\zeta^{*}(w)} \tag{15}
\end{equation*}
$$

and

$$
\begin{aligned}
\sum_{\operatorname{deg}} \sum_{G^{*}=m} \phi(G)=[k+m-1, m] & p^{n m(k+1)} \\
& \quad-[k+m-2, m-1] p^{n(m k+m-1)}
\end{aligned}
$$

Finally, if the sum on the left of (15) be taken over all G,

$$
\sum_{G} \frac{\left.\phi^{\prime} G\right)}{|G|^{w}}=\sum_{D} \frac{\mu(D)}{|D|^{w}} \sum_{E} \frac{f(e)}{|E|^{w}}=\frac{1}{\zeta(w)} \sum_{e=0}^{\infty} \frac{f^{2}(e)}{p^{n e w}},
$$

and therefore

$$
\sum_{\operatorname{deg} G=m} \phi(G)=\sum_{m=i+j}(-1)^{i}[k, i][k+j-1, j]^{2} p^{n i(i+1) / 2} p^{2 n j}
$$

We remark that more general ϕ-functions may be defined, and the corresponding sum functions constructed exactly as above. For brevity the formulas are omitted.
5. The q-Functions. We now consider polynomials L that are not divisible by the e th power of an irreducible. The number of L of degree m will be denoted by $q_{e}(m)$; the number of L^{*} by $q_{e}^{*}(m)$. For the latter function, it is evident that
$\sum_{m=0}^{\infty} q_{e}^{*}(m) p^{-n m w}=\prod_{P^{*}}\left(1+|P|^{-w}+\cdots+|P|^{-(e-1) w}\right)=\frac{\zeta^{*}(w)}{\zeta^{*}(e w)}$,
where P^{*} denotes a typical irreducible starred polynomial. Then

$$
q_{e}^{*}(m)= \begin{cases}p^{n m k} & \text { for } m<e \tag{16}\\ p^{n m k}-p^{n k(m-e+1)} & \text { for } m \geqq e\end{cases}
$$

On the other hand, since

$$
\begin{aligned}
& \sum_{m=0}^{\infty} q_{e}(m) p^{-n m w}=\frac{\zeta(w)}{\zeta(e w)} \\
& \quad=\sum_{i=0}^{\infty}[k+i-1, i] p^{n i} p^{-n w i} \sum_{j=0}^{k}(-1)^{j}[k, j] p^{n j(i+1) / 2} p^{-n e w i}
\end{aligned}
$$

we have in place of (16),

$$
\begin{equation*}
q_{e}(m)=\sum_{m=i+e j}(-1)^{i}[k+i-1, i][k, j] p^{n i} p^{n j(j+1) / 2} \tag{17}
\end{equation*}
$$

Next, let

$$
Q(m)=\prod_{\operatorname{deg}}^{L=m} L L, \quad Q^{*}(m)=\prod_{\operatorname{deg}}^{L^{*}=m} L^{*}
$$

If we put

$$
D_{s}=D_{s}\left(x_{1}, \cdots, x_{k}\right)=\left|x_{i}{ }^{p n s i}\right|, \quad(i, j=0, \cdots, k)
$$

where x_{0} is replaced by 1 , and

$$
\Delta_{s}=\frac{D_{s}\left(x_{1}, \cdots, x_{k}\right)}{D_{s}\left(x_{1}, \cdots, x_{k-1}\right)}
$$

then for

$$
F_{e}^{*}(m)=\Delta_{m} \Delta_{m-1}^{p^{n e k}} \cdots \Delta_{1}^{p^{n e k(m-1)}}
$$

we may show, exactly as in the case $\dagger k=1$, that

$$
\begin{align*}
\prod_{s=0}^{h}\left\{Q^{*}(s e+r)\right\}^{p^{n k(h-s)}} & =F_{1}^{*}(h e+r)\left\{F_{e}^{*}(h)\right\}^{-e p^{n k r}} \tag{18}\\
& =R_{e}(h e+r)
\end{align*}
$$

say, where $0 \leqq r<e$. From (18) follows at once

$$
\begin{equation*}
Q_{e}^{*}(m)=R_{e}(m)\left\{R_{e}(m-e)\right\}^{-p n k} \tag{19}
\end{equation*}
$$

For $Q(m)$ the generalization is not entirely satisfactory. In place of (18) we have

$$
\prod_{s=0}^{h}\left\{Q_{e}(s e+r)\right\}^{f(h-s)}=\frac{F(h e+r)}{\prod_{j=0}^{h-1} D_{h-j}^{e f(j e+r)}}
$$

where

$$
F(m)=D_{m} D_{m-1}^{f(1)} \cdots D_{1}^{f(m-1)}
$$

(the product of all polynomials of degree m). However, there seems to be no simple formula like (19) for $Q_{e}(m)$.

Duke University

\dagger See p. 743 of the paper in this Bulletin referred to above.

