SOME FORMULAS FOR FACTORABLE POLYNOMIALS IN SEVERAL INDETERMINATES[†]

BY LEONARD CARLITZ

1. Introduction. By a factorable polynomial[‡] in the $GF(p^n)$ will be meant a polynomial in the indeterminates x_1, \dots, x_k , which factors into a product of linear factors in some (sufficiently large) Galois field:

$$G \equiv G(x_1, \cdots, x_k) \equiv \prod_{j=1}^m (\alpha_{j0} + \alpha_{j1}x_1 + \cdots + \alpha_{jk}x_k).$$

It is frequently convenient to consider separately those G (of degree m) in which x_k^m (or any assigned x_i^m) actually occurs; we use the notation G^* to denote such a polynomial. In the case k = 1, the polynomials G reduce to ordinary polynomials in a single indeterminate; in this case G and G^* are identical.

In this note we extend certain results§ for k=1 to the case k>1. For polynomials G^* the extensions may (roughly) be obtained by merely replacing p^n by p^{nk} ; for arbitrary G the generalizations are not quite so simple.

2. The μ -Function. For G of degree m, we put $|G| = p^{nm}$; then

(1)
$$\zeta^*(w) = \sum_{G^*} \frac{1}{|G|^w} = (1 - p^{n(k-w)})^{-1},$$

(2)
$$\zeta(w) = \sum_{G} \frac{1}{|G|^{w}} = \{(1 - p^{n(1-w)})(1 - p^{n(2-w)}) \cdots (1 - p^{n(k-w)})\}^{-1},$$

the sums extending over all G^* , G, respectively.

Let f(m) be the number of (non-associated) G of degree m, $f^*(m)$ the number of G^* ; from the first of these formulas it follows that $f^*(m) = p^{nkm}$, and from the second, $f(m) = [k+m-1, m]p^{nm}$, where

[†] Presented to the Society, December 31, 1936.

[‡] Duke Mathematical Journal, vol. 2 (1936), pp. 660-670.

[§] American Journal of Mathematics, vol. 54 (1932), pp. 39–50; this Bulletin, vol. 38 (1932), pp. 736–744.

LEONARD CARLITZ

(3)
$$[k, s] = \frac{(p^{kn} - 1)(p^{(k-1)n} - 1) \cdots (p^{(k-s+1)n} - 1)}{(p^n - 1)(p^{2n} - 1) \cdots (p^{sn} - 1)}$$

Taking the reciprocal of (1) and (2), we have

(4)
$$\sum_{G^*} \frac{\mu(G)}{|G|^w} = 1 - p^{n(k-w)},$$

(5)
$$\sum_{G} \frac{\mu(G)}{|G|^{w}} = \prod_{j=1}^{k} (1 - p^{n(j-w)}),$$

where $\mu(G)$ is the Möbius function. From (4) it follows that

$$\sum_{\deg G^*=m} \mu(G) = \begin{cases} -p^{nk} \text{ for } m = 1, \\ 0 \quad \text{for } m > 1; \end{cases}$$

on the other hand, from (5) follows

$$\sum_{\deg G=m} \mu(G) = \begin{cases} (-1)^m [k,m] p^{nm(m+1)/2} \text{ for } m \leq k, \\ 0 & \text{ for } m > k, \end{cases}$$

where [k, m] is defined by (3).

3. The Divisor Functions. If $\tau(G)$ denotes the number of divisors of G, then it is clear from (1) that

(6)
$$\sum_{G^*} \frac{\tau(G)}{|G|^w} = (1 - p^{n(k-w)})^{-2},$$

while from (2) it follows that

(7)
$$\sum_{G} \frac{\tau(G)}{|G|^{w}} = \prod_{j=1}^{k} (1 - p^{n(j-w)})^{-2}.$$

From (6) we have at once

$$\sum_{\deg G^*=m}\tau(G) = (m+1)p^{nmk}.$$

Similarly by means of (7), we may evaluate $\sum \tau(G)$, summed over all G of degree m:

$$\sum_{\deg G=m} \tau(G) = \sum_{m=i+j} [k+i-1, i] [k+j-i, j] p^{nm}.$$

For the function $\sigma_t(G) = \sum |D|^t$, summed over all divisors of G, there are the formulas

300

[April,

(8)
$$\sum_{G} \frac{\sigma_t(G)}{|G|^w} = \zeta(w)\zeta(w-t), \qquad \sum_{G^*} \frac{\sigma_t(G)}{|G|^w} = \zeta^*(w)\zeta^*(w-t).$$

From the latter it is clear that

$$\sum_{\deg G^*=m} \sigma_t(G) = p^{nkm} \frac{p^{nt(m+1)} - 1}{p^{nt} - 1}$$

The corresponding formula for $\sum \sigma_t(G)$, summed over all G of degree *m*, is not so simple in general. However, if t=k, the product $\zeta(w)\zeta(w-k)$ is itself a zeta-function, and thus we get from the first equation in (8)

$$\sum_{\deg G=m}\sigma_k(G) = [2k+m-1,m]p^{nm}.$$

4. The ϕ -Functions. Obviously, the Euler ϕ -function cannot be defined in terms of a reduced residue system. Instead we define $\phi_s(G)$ as the number of polynomials A of degree s such that (A, G) = 1. For k = 1, $s = \deg G$, $\phi_s(G)$ reduces to the Euler function (for polynomials in a single indeterminate). From the definition it is easily seen that

$$\sum_{s=0}^{\infty} \phi_s(G) p^{-nsw} = \sum_{(A,G)=1} \left| A \right|^{-w} = \zeta(w) \prod_{P \mid G} \left(1 - |P|^{-w} \right),$$

and therefore, by equating coefficients of p^{-nsw} ,

(9)
$$\phi_s(G) = \sum_{D \mid G} {}^{\prime} \mu(D) f(s - d),$$

where $d = \deg D$, and the sum is over all divisors of degree $\leq s$. For $s \geq \deg G$, the sum is over all D; for $s = \deg G$, we shall omit the subscript, so that

(10)
$$\phi(G) = \sum_{D \mid G} \mu(D) f(s - d),$$

summed over all divisors of G.

Similarly, $\phi_s^*(G)$ is the number of A^* of degree s such that (A, G) = 1. Then

(11)
$$\phi_s^*(G) = \sum_{D \mid G} {}' \mu(D) f^*(s - d) = \left| G \right| {}^k \sum_{D \mid G} {}' \mu(D) \left| D \right| {}^{-k}.$$

Again for $s = \deg G$, we write simply $\phi^*(G)$, and we have

1937.]

LEONARD CARLITZ

(12)
$$\phi^*(G) = |G|^k \sum_{D \mid G} \mu(D) |D|^{-k} = |G|^k \prod_{P \mid G} (1 - |P|^{-k}),$$

where P denotes a typical irreducible divisor of G.

For $\phi^*(G)$ the sum function (taken over G^*) is quite simple. Substituting from (12), we find

(13)
$$\sum_{G^*} \frac{\phi^*(G)}{G^w} = \sum_{D^*} \frac{\mu(D)}{|D|^w} \sum_{E^*} \frac{|E|^k}{|E|^w} = \frac{\zeta^*(w-k)}{\zeta^*(w)}$$
$$= (1 - p^{n(k-w)}) \sum_{j=0}^{\infty} p^{nj(2k-w)},$$

and therefore

(14)
$$\sum_{\deg G^*=m} \phi^*(G) = p^{2nmk} - p^{nk(2m-1)} \quad \text{for} \quad m \ge 1.$$

In the second place, we may extend the sum in the left member of (13) over all G:

$$\sum_{G} \frac{\phi^{*}(G)}{|G|^{w}} = \sum_{D} \frac{\mu(D)}{|D|^{w}} \sum_{E} \frac{|E|^{k}}{|E|^{w}} = \frac{\zeta(w-k)}{\zeta(w)},$$

from which follows

$$\sum_{\deg G=m} \phi^*(G) = \sum_{m=i+j} (-1)^t [k, i] [k+j-1, j] p^{n(k+1)j} p^{ni(i+1)/2}.$$

For $\phi(G)$ the formulas corresponding to (13) and (14) are

(15)
$$\sum_{G^*} \frac{\phi(G)}{|G|^w} = \sum_{D^*} \frac{\mu(D)}{|D|^w} \sum_{E^*} \frac{f(e)}{|E|^w} = \frac{\zeta(w-k)}{\zeta^*(w)},$$

and

$$\sum_{\deg G^*=m} \phi(G) = [k + m - 1, m] p^{nm(k+1)} - [k + m - 2, m - 1] p^{n(mk+m-1)}.$$

Finally, if the sum on the left of (15) be taken over all G,

$$\sum_{G} \frac{\phi\langle G\rangle}{|G|^w} = \sum_{D} \frac{\mu(D)}{|D|^w} \sum_{E} \frac{f(e)}{|E|^w} = \frac{1}{\zeta(w)} \sum_{e=0}^{\infty} \frac{f^2(e)}{p^{new}},$$

and therefore

$$\sum_{\deg G=m} \phi(G) = \sum_{m=i+j} (-1)^{i} [k, i] [k+j-1, j]^{2} p^{ni(i+1)/2} p^{2nj}.$$

302

[April,

303

We remark that more general ϕ -functions may be defined, and the corresponding sum functions constructed exactly as above. For brevity the formulas are omitted.

5. The q-Functions. We now consider polynomials L that are not divisible by the *e*th power of an irreducible. The number of L of degree m will be denoted by $q_e(m)$; the number of L^* by $q_e^*(m)$. For the latter function, it is evident that

$$\sum_{m=0}^{\infty} q_{e}^{*}(m) p^{-nmw} = \prod_{P^{*}} (1 + |P|^{-w} + \cdots + |P|^{-(e-1)w}) = \frac{\zeta^{*}(w)}{\zeta^{*}(ew)},$$

where P^* denotes a typical irreducible starred polynomial. Then

(16)
$$q_{e}^{*}(m) = \begin{cases} p^{nmk} & \text{for } m < e, \\ p^{nmk} - p^{nk(m-e+1)} & \text{for } m \ge e. \end{cases}$$

On the other hand, since

$$\sum_{m=0}^{\infty} q_{e}(m) p^{-nmw} = \frac{\zeta(w)}{\zeta(ew)}$$
$$= \sum_{i=0}^{\infty} [k+i-1,i] p^{ni} p^{-nwi} \sum_{j=0}^{k} (-1)^{j} [k,j] p^{nj(j+1)/2} p^{-newj},$$

we have in place of (16),

(17)
$$q_{e}(m) = \sum_{m=i+e_{j}} (-1)^{j} [k+i-1, i] [k, j] p^{ni} p^{n_{j}(j+1)/2}.$$

Next, let

$$Q(m) = \prod_{\deg L=m} L, \qquad Q^*(m) = \prod_{\deg L^*=m} L^*.$$

If we put

$$D_s = D_s(x_1, \cdots, x_k) = |x_i^{pnsj}|, \quad (i, j = 0, \cdots, k),$$

where x_0 is replaced by 1, and

$$\Delta_s = \frac{D_s(x_1, \cdots, x_k)}{D_s(x_1, \cdots, x_{k-1})},$$

then for

$$F_{e}^{*}(m) = \Delta_{m} \Delta_{m-1}^{p^{nek}} \cdots \Delta_{1}^{p^{nek(m-1)}},$$

we may show, exactly as in the case $\dagger k = 1$, that

(18)
$$\prod_{s=0}^{h} \{Q^*(se+r)\}^{p^{nk(h-s)}} = F_1^*(he+r)\{F_e^*(h)\}^{-ep^{nkr}}$$
$$= R_e(he+r),$$

say, where $0 \leq r < e$. From (18) follows at once

(19)
$$Q_{e}^{*}(m) = R_{e}(m) \left\{ R_{e}(m-e) \right\}^{-pnk}.$$

For Q(m) the generalization is not entirely satisfactory. In place of (18) we have

$$\prod_{s=0}^{h} \{Q_{e}(se+r)\}^{f(h-s)} = \frac{F(he+r)}{\prod_{j=0}^{h-1} D_{h-j}^{ef(je+r)}},$$

where

$$F(m) = D_m D_{m-1}^{f(1)} \cdots D_1^{f(m-1)}$$

(the product of all polynomials of degree m). However, there seems to be no simple formula like (19) for $Q_e(m)$.

DUKE UNIVERSITY

[†] See p. 743 of the paper in this Bulletin referred to above.