
THE ROLE OF ALGEBRA IN TOPOLOGYf 
BY SOLOMON LEFSCHETZ 

1. Introduction. The assertion is often made of late that all 
mathematics is composed of algebra and topology. It is not so 
widely realized that the two subjects interpenetrate so that we 
have an algebraic topology as well as a topological algebra. 

The increasing importance of algebra in topology, a domain 
whose roots lie in a very different soil, signifies that here also 
the age of consolidation and coordination is upon us. My pres­
ent object is primarily to show that a reasonable blend of the 
algebraic and topological points of view is possible. For this pur­
pose I shall formalize my earlier procedure of immersion in vari­
able euclidean spaces by means of which I introduced dual 
cycles into topology. We shall see that around this mode of at­
tack it is possible to group many of the recent very interesting 
results of combinatorial topology. 

I. ALGEBRA OF COMPLEXES 

2. Abstract Complexes. Abstract complexes have been investi­
gated by various authors, notably in recent years by J. W. 
Alexander, W. Mayer, and A. W. Tucker. % While I shall lean 
particularly on Tucker's work, my discussion bears largely on 
simplicial complexes and their duals, the basic types in topology. 

According to Tucker, then, an abstract complex K is a set of 
elements E, its cells, partially ordered relative to a transitive 
geometric relation of incidence < ("on the boundary of"), and 
with certain additional (algebraic) relations of incidence to be 
described presently. Each E has a dimension p which is a posi­
tive or negative integer and shall be frequently denoted by an 
index, as Ep. Moreover E<E' implies dim E <dim E'. A p-chain 
of K is a linear form 

(1) Cp = x&j, 

t An address delivered at Duke University, December 30,1936, as the retir­
ing presidential address, before the American Mathematical Society. 

Î J. W. Alexander, Transactions of this Society, vol. 28 (1926), pp. 301-329 ; 
W. Mayer, Monatshefte für Mathematik und Physik, vol. 36 (1929), pp. 1-42, 
219-258; A. W. Tucker, Annals of Mathematics, vol. 34 (1933), pp. 191-243. 

345 



346 SOLOMON LEFSCHETZ [June, 

where Xi is a member of a given additive abelian group @. There 
is attached to K a linear chain-function F, called a boundary 
operator and determined by 

(2) F(EJ) = [EjiEJ-tlEJ-i, FixiEJ) = *<F(EP*), 

where the incidence-number [ ] is an integer, which is 9e 0 only 
when EpLx<Ej. The operator F is subjected to the condition 

(3) FF = 0. 

A chain Tp such that ^(T^) =0 , is a p-cycle. Owing to (3), any 
F(Cp+i) is a r p . The difference (factor) group Gp= {Tp} 
— {F(Cp+i)} is the pih homology group of K over ©. 

If we replace everywhere EJ by —Ep
i, the relations just writ­

ten remain true provided that all the incidence-numbers [ ] 
involving EJ are changed in sign. We agree that under these 
conditions K has not been changed, its cell EJ having merely 
been reoriented. 

Dualization. Consider a new aggregate i£*={ .Ef} , where 
Ef<—>EJ is a (1-1) correspondence. We assume: (a) dim E f 
= - d i m E J = - £ ; (b) Ef <Ef when and only when Ej <EJ ; 
(c) [Ef^lEf ] = ( - 1 ) P [EJ:EJ^]. I t is a simple matter to 
verify that the resulting operator F for K* satisfies (3) ; hence 
K* is also a complex, the dual of i£\ 

The changes in sign indicated under (c), which are convenient 
for some purposes, may be eliminated by reorienting the cells 
EJ, p even. Therefore the relation between K and K* is in fact 
symmetrical, and in particular X** = X. This symmetry lies at 
the root of all the duality properties in topology, f 

There subsist between the homology groups Gp of K and Gv 

(for the dimension — p) of X* the duality relations of the 
Poincaré or Pontrjagin types according to the choices of co­
efficient-groups. Thus if the coefficients are: integers for K, real 
numbers mod 1 for K*, the groups Gp and Gv are one another's 
character-groups. 

f Some recent authors (Alexander, Kolmogoroff, Whitney) bring in this 
dualism by referring the properties of K* back to K% through the transforma­
tion £f —>E%

V. As a consequence the operator F of K* gives rise to a dual 
boundary operator F* for K, with dim F*(C)=dim C+l . The choice of pro­
cedure is largely a matter of taste. 
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3. Simplicial Complexes. The elements of a simplicial com­
plex are the simplexes. An (abstract) p-simplex ap is any finite 
collection of p+l elements or vertices &o, • • • , aP', its f aces are 
the proper subcollections of the set. a is oriented by assigning 
an order to its vertices modulo an even permutation. A closed 
(abstract) simplicial complex is a collection K = {a} such that 
a G K implies that every face of a G K. The incidence-numbers 
are determined by [aa".(r] = 1, under which (3) is verified. 

A very suggestive description of K and its dual may be given 
in terms of a certain algebra 2Ï. To define it we introduce new 
symbols ar1,1, #r1 , r , +1> ~~1> 0 and shall assume that all the 
symbols a other than 0, ± 1 obey the following rules of combina­
tion: 

aa' = — a'a, a2 = 0, arl'la = 1; 

0-1,r — _ 0-1,1 (hence aa~1,r = 1); 

if neither a product a • • • a' nor its inverse is made up of the 
vertices of a a G if, it is to be set equal to zero. 

The symbols a~l>1, a~l'r play the role of left and right in­
verses. Usually only the former shall be considered and I shall 
merely write a~l for a~M. The only monomials that may occur are 
then of one of the types, ± a = ± a • • • b, ± <7-1 = + b~1 • • • a - 1 . 
The products of any two of the monomials are obtained in the 
customary formal way and always give rise to monomials of one 
of the two types or to ± 1 , 0 . The associative law holds between 
products of <r's or of a"vs alone, but not between products in­
volving both types. Thus (a~1'la)a~l'r = a~1'r7£a~1'l(aa~l'r) 
= a~1'*. I t follows in particular from these rules of combination 
that (c~l • • * b~xa~l) (a b • • • c) = 1. For this reason we designate 
the first factor by (a b • • • c)~l. This is again a left-handed in­
verse, the exponent —1 taking here also the place of — 1, /. 

Each oriented a of K determines a unique monomial product 
of positive powers which we shall likewise denote by a. The 
^-chains over a group of coefficients @ are the forms of degree 
p with coefficients in @. They are members of a ring 9î (non-
commutative and non-associative) whose elements are the 
polynomials in the base elements of 21, with coefficients in ®. 

In terms of the inverse symbols, we have 

(4) F(ap) = X) or1-*, for p > 0; F(a%) = 0. 
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Hence 

(5) F{CP) = E arl-Cp for p > 0; F(C0) = 0. 

The direct verification of (3) is immediate. 
Notice that if L is a closed subcomplex of K, and we consider 

only cells of K — L, setting all others equal to zero, the condi­
tions for a complex are still verified. K — L is a so-called open 
complex. 

It is quite natural at this juncture to introduce the product 
dp1 as an abstract ( —/>)-cell, the inverse of ap, and adopt 
the following rules: (a) Gp

l<(r~q1 when and only when aq<ap; 
(b) the boundary operator is as before 

(6) ^(CTJ7]) = (J2 a'fx)<TP'v for every p. 

The verification of (3) is again immediate; hence K '* = {a' l} 
is a complex. The incidence relations and numbers show that 
it is isomorphic with K*. In the future we may therefore re­
place the dual elements by inverses and K* by K~ l.'\ 

Augmented Complex. In certain applications it may be more 
convenient to define dim a as equal to the number of vertices 
of a. This may be done formally by considering 1 as a vertex 
of every cr, that is, by considering <r as being in effect \a. The 
boundary relations are then chosen as 

(7) F{C) = Z ar^C) F{x) = 0, x e © 

for every C. This is tantamount to the old rule wherein it took 
two points to make a zero-cycle, one being insufficient, whereas 
under our initial scheme every F(a)=Q. Under these assump­
tions we shall call K an augmented complex (see Tucker, loc. 
cit., p. 11). 

Remark. Let ÏÏÎ be a Hausdorff space and (do, • • • , ar) a finite 
covering of 9î by open sets. The intersection diagram of the 
sets in the sense of Alexandroff is a simplicial complex K with 
the a's as vertices, the rule being that a^ • • • (iip G K whenever 
the sets indicated have an intersection ^ 0 . The incidences in K 
correspond to the inclusions ^ . Let us now designate by a\A the 

f Quotients of the positive symbols have been utilized by M. H. A. New­
man (Cambridge Philosophical Transactions, vol. 27 (1931), pp. 491 504), in 
the treatment of combinatorial intersections. 



I937-] ROLE OF ALGEBRA IN TOPOLOGY 349 

closed set 9î —a». The aggregate {ar1} is merely any aggregate 
of non-intersecting closed sets. To YLai ^ 0 there corresponds now 
TLiW-af1) ?*0 or J^a^^dt. It follows that the elements of the 
dual K~x represent the mutual inclusions of the sums with •< 
corresponding this time to c . This gives a noteworthy geomet­
rical interpretation for the duals of simplicial complexes. It may 
be pursued still further, in the construction of the projection-
spectra, and leads to a natural interpretation for the opposite 
types of homomorphisms (inverse and direct) associated with 
the ordinary and the dual cycles of 9Î. 

II . SPHERES 

4. Duality. The duality properties of complexes and sets 
(duality theorem of Alexander and its extensions) are intimately 
connected with the topological properties of the complementary 
regions of their topological images in euclidean spaces or 
spheres. We may therefore expect to find a good approach 
to these questions in a "combinatorial" immersion of a given 
abstract complex into abstract spheres. This requires that we 
begin with a consideration of the latter. 

The simplest abstract w-sphere Hn is the sum of the proper 
faces of a <rn+i = ao • • • an+i. We shall designate its dual by Hn1. 

The complex Hn is the most elementary combinatorial n-
manifold Mn. Owing to its simplicity we may take full advan­
tage of the known theory of manifolds, f which is moreover easily 
developed for this special case. As in the general theory, the 
first step is to take the bar y centric subdivision Hn' of Hny and to 
relate duality to Hn'. The complex Hn' will have a single 
new vertex associated with each a»0 • • • a»-p, and denoted by 
(io ' * • iP). 

We verify that the simplexes an°-P = (Tv~
l(Tn+i have the mutual 

incidences of the duals <rp*. It follows that the aggregate 
{cfp~l(Tn+i\ =Hn° is a complex isomorphic with the dual of Hn. 
Notice that <rn°-p is uniquely determined by the condition 
<Tp<rn°-p=(-l)P+1<Tn+l. 

On the other hand if we consider for ap = ai0 • • • aip the sum 
(Trf-p of the (n — p) -simplexes of Hn' with vertices (io • • • ip 

j - - - k), we find that it is isomorphic with a barycentric sub-

t See Chapter I I I of my Colloquium Lectures, Topology, New York, 1930 
(hereafter referred to merely as Topology). 
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division of type Gn-P. Therefore <rnLp is essentially an (n — p)-
simplex.f We shall agree to orient its component (w — ̂ -s im­
plexes (of Hn ) concordantly with the subdivision of o-n°-P, and 
thus oriented we denote it by (<rp)* or v*. The aggregate {cr*} 
is another isomorph of the dual of Hn, and it is this new complex 
which shall be designated temporarily by H*. 

Geometric Realization. The combination Hn, Hn* is very simi­
lar to the well known configuration of a pair of regular tetra-
hedra symmetrical with respect to their common centroid. A 
more convenient but closely related geometric configuration is 
obtained as follows. Choose a geometric simplex <rn+i in a eu-
clidean space Sn+i, call G its centroid, and cr, • • • the images in 
ôTn+i of the abstract elements <r, • • • . The linear spaces joining G 
with the faces of an+i decompose the boundary ~Hn into the ele­
ments of Hn . Let P , P' be the intersections with Un of any line 
through G. Through the radial transformation p: P-^P1', the 
simplexes of (cr^-ôVfi)' go into those of (cfp)*. The latter is 
therefore an (n — p)-cell transverse to &p and intersecting it in 
its centroid. These facts follow at once from the expressions of 
the simplexes of ~öp

v and (crp)*. We observe also that the spaces 
cf, a* are actually orthogonal, so that here both duality and 
"algebraic" orthogonality correspond to geometric orthogonal-

ity. 
The geometric transformation p determines a simplicial trans­

formation p: Hn^>-(Hn~
l)f, hence also H*-^Hnl, characterized 

by permuting the vertices of Hn associated with <rp and <rfl<rn+i. 

5. Chain-Products. Generally speaking we shall understand 
by chain-product a chain-function COD of two chains C, D 
with the following properties: 

POSTULATE I. COD is a bilinear f unction of C and D\ 

POSTULATE II . dim (COD) =dim C+dim D; 

POSTULATE I I I . F(COD) = F(C)OD + (-l)d™ c COF(D). 

The following noteworthy instances justify the definition.J 

f I am indebted for this remark and also for suggesting the radial trans­
formation p below to one of my students, Mr. Shaun Wylie. 

t The three types (a), (b), (c) of Topology were unified by Tucker into a 
single ^-multiplication, differing only from the above in tha t the power of 
( — 1) was w + d i m C, with a different w in each case. 
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(a) Intersections of chains. Let C* denote the result of replac­
ing in C every a by its dual or*. We have developed (loc. cit.) 
a complete combinatorial theory for the intersections of chains 
D and C*, written D- C*. Then our postulates are fulfilled with 
<?*©£>=£>• C*. 

(b) Euclidean-products. This operation on two complexes is 
the abstract equivalent of the topological or euclidean product 
of their geometric realizations and plays an essential role in 
problems of fixed points {Topology, Chapter VI). 

(c) Joins of two simplicial complexes. Let K — {a}, K' = {a'} 
be two augmented complexes. Their join KK' is the augmented 
complex {oV}. If C, D are chains of K, K', CD is a definite 
chain of KK', which as a function of both satisfies our three 
postulates. 

(d) The products of Cech and Whitney.^ They are reducible to 
intersections combined with certain piece-wise simplicial trans­
formations. We are back to Hn, and adopt a fixed order for its 
vertices. We agree also that in any expression aia^ • • • a*?, <r, 
(i> jt ' ' ' » k), • • • , the indices are always to be taken in 
ascending order. 

Now there is a simplicial transformation r : Hn —>Hn defined 
by (if j , ' ' ' , k)—>dk. When the vertices in aa are consecutive 
beginning with a0 we readily verify 

(8) T M * = a F ( M - V n + 1 ) . 

Consider now a product aaa', where the vertices are also con­
secutive beginning with &o and let O denote the intersection 
operation of (a). We verify : 

(9) r(Oa)* © o-ao-0 = atr', 

(10) r[(a<r')* O T(<ra)*] = T ( ( W ) * . 

t The earlier product of Alexander-Kolmogoroff must be mentioned here. 
See notably Alexander, Annals of Mathematics, (2), vol. 37 (1936), pp. 698-
708; Cech, ibid., pp. 681-697. The connection of these recent products with my 
intersection theory has just been carried out by Wylie by a scheme analogous 
to the one utilized below. It explains why they are so numerous and how they 
are interrelated. The Alexander-Kolmogoroff ring based on these products is 
identical with the ring obtained by Gordon (Annals of Mathematics, (2), vol. 
37 (1936), pp. 519-525) on the basis of our topological intersection theory as 
proved by Freudenthal in a forthcoming paper in the Annals of Mathematics. 
Since writing the above, I have found that the methods and results of Freu­
denthal and Wylie are substantially similar. 
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If the indices of aaa' are not consecutive but merely in increas­
ing order, we again obtain (9) and (10) provided that r is re­
placed by the analogous operation obtained when the order of 
the indices is: first those of crao-', then the rest, in increasing 
order in each case. Finally in all other cases but those consid­
ered the operations performed at the left in (9) and (10) give 
zero for result. 

We introduce now a new operation ® defined in the following 
cases 

(11) {va)~l ® <ra<r' = 0<r', 

(12) M " 1 ® ( a O _ 1 = {<raaf)-\ 

whenever the factors in aaa' are in increasing order, while 
otherwise 

(13) a"1 ® a' = a'1 ® <J'~1 = 0 . 

The products C' = C~l<8>D, and C"-l = C~l®D-1 are defined 
for all C and D by imposing Postulate I. The other two are 
readily verified. 

The coefficients of the chains which are multiplied must be 
such that the operations indicated have meaning: namely mem­
bers of a unique ring, or two additive groups between which 
multiplication is defined, and so forth. 

Kronecker-Index. The intersection a a* is a single vertex of 
Hn taken ± 1 times if a* is the dual of cr, = 0 otherwise. The 
exact coefficient, + 1 , 0, is called the Kronecker-index of a and 
a*, and designated by (<r-<r*). From there we derive (Cp- C/) by 
the additive property. The actual intersection is a zero-chain, 
and the index is the sum of its coefficients. 

If we designate by (C C') the constant term in the formal 
(algebraic) product of C and Cr, then 

(14) ( ( T . (0*) = ( c r ^ ) , 

(15) (cp-cj*) = (c^c;-1). 
Therefore the non-vanishing of the formal product (15) is a 
sufficient condition that C, C' have common ^-simplexes. 

6. Application to Simplicial Complexes. We return to our sim-
plicial complex K with its vertices #o, • • • , #r- We increase them 
by a r+i, • • • , an+i, n arbitrary, and construct Hn as before. The 
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cells a**, a G K, constitute this time a sub-complex of i7n*, and 
it is this complex which we denote by if*. As for the abstract 
dual of K, we designate it by K~l. We find by direct verification 
that if we preserve everywhere merely the cells of K, K*, and 
apply our operations only to these, then all the results obtained 
so far continue to hold. Thus in (9) we must have <JCL<J' G K, 
and in (10), we write zero at the right whenever aacr' does not 
belong to K. The different abstract products of §5 will be de­
fined as before with F as the proper operator for K and K*, and 
for all multiplications to which it has been applied. We deduce 
directly from §5, Postulate III , that all chain-products have the 
following common properties: 

A. The product of two cycles is a cycle ; 
B. If one of the factor cycles in a product of two cycles is a 

boundary-cycle so is the product. 
Property B implies also that the homology class of the prod­

uct of two cycles is uniquely determined by those of the factors. 
This is the basic property in the proof of the topological invari­
ance or of the invariance under subdivision of intersection-
cycles. It may of course be utilized for the same purpose for the 
other multiplications. 

Manifolds. Manifolds may be fitted readily into our scheme. 
Roughly speaking if we wish to characterize if as a ^-manifold, 
we merely need to require that if a G K, and St(a) is its star, 
then St(a) -o-* = f is a ^-circuit mod K — St(a) (Topology, Chap­
ter I I I ) . It will follow that the intersections f-<rfl* determine 
(P~0) -chains which are related to the <rq's like the duals. On 
the other hand they may also serve to determine the Betti 
groups and the like, and there follow the usual duality theorems 
for manifolds {Topology, Chapter I II) . 

Geometric Realization. The notations being as in §4, we find 
by means of the symbolic expressions of the cells, that the sim-
plexes of 7t* make up the Un -neighborhood of ~K. If $ is the 
boundary of the neighborhood then the cycles of X* are those 
of this neighborhood mod <£. Their homology relations and the 
like are those of K mod TIn — K. This confirms our assertion 
that the dual complex is tied up with those immersion proper­
ties of K in any ^-sphere which are independent of n. The topo­
logical invariants of ÏT* (Betti groups and their invariants) are 
thus found to be topological properties of the complementary 
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domains of Hn — ~K, depending solely upon the topology of ~K, 
but not upon n. The simplest of these invariant properties is 
Alexanders duality theorem for the Betti numbers of K and 
of Hn — K. If we introduce orthogonal groups of coefficients we 
have the corresponding extensions for the Betti groups due to 
Pontrjagin. 

I I I . CORRESPONDENCES AND TRANSFORMATIONS 

7. Product Complexes. Let A, B be two complexes and T, U 
two transformations A—>B. What elements if any are trans­
formed alike by T and U? This is essentially the problem of the 
coincidences. We have given coincidence and fixed point formu­
las for geometric complexes and certain abstract spaces (To­
pology Chapters VI, VII), and Tucker (loc. cit.) has completely 
treated the abstract complex. We shall consider the simplicial 
case only, where, owing to the negative dimensions, the treat­
ment may be made particularly simple. 

Let then A, B be two finite closed simplicial complexes and 
let a», bj be their vertices. We augment both A and B so that the 
dimension of any simplex is equal to the number of its vertices. 

Let 21 and 33 be the algebras of the type of §3 corresponding 
to A, B, and let at, j8,- be the monomials of 21, 93 describing the 
simplexes of A> B. We shall denote by a1 the left-inverse of on 
and by (i* the right-inverse of ]8,-, so that 

(16) a*ai = $$1 = 1 , (i not summed). 

The elements a\ PJ' are those of the duals A"1, B"1. 
We now introduce a new algebra 2133, composed of 21, S3, 

whose base terms are a»/?', a*j8,-, ± 1 , 0 , the monomials indicated 
being zero unless each factor 9^0. We verify under the circum­
stances that the aggregates 

(17) AB-1 = {<*£*}, A~*B = {a%} 

treated as if all the factors were simplexes, are dual to one an-
another with aS\ alf5j as corresponding dual elements, t 

t Our procedure may be made more "geometric" by completing A, B to 
spheres Hn

a, Hn
b, with o-n°+i» *nb+i as their simplexes, then taking the simplexes 

{a<j8/-V»$j.i}, {an
a+icti~1Pj} of the join HaHb. It may be observed that the chief 

advantage of our treatment of these questions over Tucker's is that practically 
no computations are necessary to show that various cell-aggregates encoun­
tered are complexes. 
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As a rule when we have a combination such as a^J\ it shall be 
understood that dim c^= —dim /3?', and dim a» shall be denoted 
hyp. 

8. Correspondences. By a correspondence Sa
& between A and 

5 - 1 over a coefficient-ring ®, is meant an aggregate of triples 

Sa
&: [ai,pt,xf}9 xf e®. 

The numbers # may be thought of as weights with which the 
couples are taken. 

(Sa& determines the chain of AB~l : 

(18) Ca
b = xfatf', 

and also a dual correspondence between -4 - 1 and B : 

(£&a: {a*, j8y, £**} , ^ = # / , 

whose representative chain in A~lB\ 

(19) C6
a = xéa^i, 

is dual to (18) except for possible change in sign. Notice that if 
xPj xp denote the matrices of the coefficients x, x for dim ai = p, 
X-Iieii Xp ~~~ x p . 

Let 35a
b be a second correspondence with D,yin place of C, x. 

We inquire whether Ea
6 and £)a

& possess coincident couples, that 
is, whether some (a»,/30 G fë«5 and also G 3)a

&. We shall then say 
that there is a coincidence of £a

& and £)«&. A necessary and suffi­
cient condition for such an occurrence is that 

(20) (— l)*xfyé = xfoLifii-yM^j ^ 0, (i, j unsummed). 

A sufficient condition for the occurrence of some coincidence is, 
from (5), that 

(21) - 0 = (C*Df) ^ 0 , 

where (CD) represents the numerical term in this product, or 
the Kronecker-index of the chains. © is the algebraic number of 
coincidences. By actual computation 

(22) - © = ] £ ( - l)pxi^yi
i = ]C ( - l)p trace xpyp

f. 

We might obviously assume that the coefficients x, y belong re­
spectively to groups ®, ®' between which a distributive multi­
plication is defined (for example, ®, ®' are character groups of 
one another). 
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It is clear that the present result could only be of use in to­
pology whenever @ is expressible in topologically invariant 
terms. Since the only known chains with topological character 
are cycles, we are led to the following very natural assump­
tion. 

ASSUMPTION I. The representative chains Ca
h, Dba are both cy­

cles (Topology, Chapter VI). 

It is also expedient to add another assumption. 

ASSUMPTION II . The ring © is the field of all rational numbers. 

Now the bases a, P for the chains of A and B~l have been 
chosen "orthogonal" throughout, in the sense that 

alai = p{p
J' = hi (the Kronecker h). 

If we impose contragredient transformations upon the bases our 
results will be left formally-unchanged. 

Under the circumstances, if we introduce suitable canonical 
bases with the non-bounding cycles duly isolated, the only terms 
left in the expressions of the chains C, D will be products of such 
cycles. Returning now to the non-augmented complexes, with 
dimensions counted in the usual way, if Xi, F,-*, denote the co­
efficients in the transformation of the independent cycles, and 
their matrices are denoted by Xpy Ypy we shall have 

(23) G = £ ( - l ) p trace XPYP'. 

9. Transformations. A transformation Tab'. A-+B over © is a 
collection of homomorphisms between chain-groups determined 
by relations 

Tab'* on —» xip,-; x € @; dim at- = dim Pj. 

It determines a dual transformation Tab and two dual corre­
spondences (Sa6, Ê&a: 

Tabl a* = xfp1', xj = xi; 

Sa6: (a<, 0 ' ; xf), 6b°: (a*, pf; %j). 

Let Uab be a second T with 35, y in place of Ê, x. A coincidence 
of Tab and Uab is a couple (aiy /?,•) such that PjeTabai and also 
eUabOti. They correspond to the coincidences of (£a

6 and S)a
6. 
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Hence 0=^0 is also a sufficient condition for the existence of some 
coincidence of Tab and Uab- The matrices xpy yp are now the 
transformation matrices for the ^-cells, and Xp, Yp, those for 
the ^-cycles. Here also restrictions are necessary. Now it follows 
from Assumption I that if a, ft are cycles, then Ca

bfi and aDf are 
both cycles. In order that this hold, we find that the following 
assumption is a necessary and sufficient condition. 

ASSUMPTION I ' . Tab and Uab are permutable with the boundary 
operator F. 

This is Tucker's equivalent of our earlier Assumption I. 
Suppose now that T, U are transformations of A into itself. 

We introduce another copy B of A, replace T, U by transforma­
tions^—>JB, and then apply our formulas. In particular, if U=l, 
we have yp = 1, Yp = 1, and hence 

(24) 0 = — ] £ ( — 1)* trace xp = ] £ ( - l)p trace X*. 

The equality between the sums in (22), (23) is a so-called 
generalized Euler-Poincaré relation in the sense of Hopf and 
Tucker. When T=U=1 it reduces in fact to the ordinary 
Euler-Poincaré relation. 

10. Coincidences and Fixed Points of Transformations of Geo­
metric Complexes. In formulas (23) and (24) one may readily 
recognize the abstract equivalent of (23), (28), (29) of Topology, 
Chapter VI, our early coincidence and fixed point formulas for 
geometric manifolds and complexes. Let us show how the pres­
ent algebraic procedure is related to our former more topological 
method. 

Let A be a closed simplicial complex, and A o a topological 
image of A in a space Sn. If { Y / } is a base for its rational 
^-cycles and Cn-P a cycle of Sn mod 5^—^40, the relations 

(jp -Cn-p) = %i, (x{ rational), 

uniquely determine a homology class for Cn-V. The aggregate 
of all these classes for all the'possible choices of ylo, Sn, is the 
rational ( — p)-dual cycle yp determined by the numbers Xi. We 
write YP 'M) when every Xi = 0 and set (yp

i-yp) =#». These dual 
cycles (called pseudocycles in our earlier work), form an addi­
tive abelian group. Dual cycles and groups are thus introduced 
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directly without passing through the medium of the chains, by 
means of their "orthogonality" to the absolute cycles. 

Suppose now that we have two geometric complexes A, B 
undergoing two transformations T, U into one another. By a 
coincidence of the two is meant a couple of points xE;A,yEB, 
such that y E Tx,yG Ux. Does there exist an invariant analogous 
to © such that when it is ^0 there is at least one coincidence? 

Let us identify A, B or subdivisions of them with geometric 
complexes which are subcomplexes of two euclidean regions fin

a, 
flw

& subdivided into simplexes of diameter <e assigned. Let 
N^ Nb be the Qa, fl6 neighborhoods of A, B. Let us designate by 
ai, pi and a\ ]8* the ^-cycles and ( — £)-dual cycles of A, B. We 
assume them represented by obvious simplicial cycles. 

Let Sin be the product of the spaces of A and B. The chains 
a*Xj8j and aiXfi3' characterize two dual types of cycles of 
S^n—A XB, which we shall call I \ A. Let us suppose that T, U 
may be extended to transformations T, U: Na—>Nb, having the 
following properties: 

(a) the transformations A-^B which they determine are 
T, U; (b) the coincidences of T, U are the same as those of 
T, U) (c) the sets in 52n which describe T, U coincide with two 
singular relative cycles I \ A, of 52n mod Sin —AXB, respectively 
expressible (in the sense of homology) in terms of the cycles of 
types ai Xfi3 and a1 X j3j. Under the circumstances the Kronecker-
index (r-A) is a suitable invariant©. For ( r -A)^O implies that 
T, A intersect, hence that 2", U have a coincidence and by (b) 
this must hold regarding T, U. In fact if we express T, A respec­
tively in terms of the cycles, c^Xft- and (XiXP3, and apply my 
intersection theory (Topology, Chapter IV), we obtain precisely 
(23). 

The simplest case is where T is a continuous single-valued 
transformation ( = c.s.v.t.). We then choose Na, Nb normal (Top­
ology, p. 91). That is to say, for example, through every point 
P of iVa—A there passes a unique projecting segment with end-
points Q on A and R on the boundary of Na. We then choose T 
such that TQR= TQ. I t turns out that T has for image in S2n a 
T. We choose for U a transformation such that U~l is of the type 
of a c.s.v.t. and extend it to a U in a similar manner with the 
roles of A, B interchanged. The image of U is then a A. 

Special case. B is a copy of A, U is A—>B corresponding to the 
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identical transformation A—>A. Then U may be chosen of 
type A, and the number (T-A) obtained is precisely (24). 

Let us recall in concluding that the same formulas hold for 
transformations of compact metric HLC spaces. They are spaces 
endowed with a strong type of local connectedness in the sense 
of homology, analogous to that possessed by the so-called abso­
lute neighborhood retracts, f 
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CIRCLES IN WHICH \F{x)\ HAS A SINGULARITY 
OR ASSUMES PREASSIGNED VALUES 

BY J. W. CELL 

Let k be a given positive integer and let a0 and a f c^0 be two 
given constants. Let Fk(x) be any member whatever of the class 
Ch of functions which are regular in the neighborhood of the 
origin and which there have the expansion 

Fk{oc) = a0 + akx
k + ak+ixk+1 + • • • , 

where a0 and ak are the two given constants. 

THEOREM 1. Let rj(a0l # i ) = 0 if \a0\ = 1 . In case | a 0 | < 1 , 
let r)(a0, ai)= {l — \a0\

 2 } / | # i | , and if \a0\ > 1 , let rj(aQy a\) = 
{21 ao | log | Ö*O | } /1 ai \. Then in or on the circle \ x \ =rj(a0, #i), either 
Fi(x) has a singularity or \ Fi(x) \ assumes the value one. Moreover, 
no smaller radius will do f or the löhole class of functions C\. 

COROLLARY. rj(a0, 1) = | a i | 77(00, ax). 

PROOF. If | &o| = 1, the theorem is granted, so we shall hence­
forth suppose that this is not the case. If a0 = reia, ( r^O), we 
define E(x) =e-iaF1(x). Then \E(x)\ =\FI(X)\ and hence we 
may, with no loss of generality in the proof, suppose that aQ is 
real and non-negative. 

CASE 1. 0 ^a0 < 1. There exists a positive number rj such that 
for \x\ ^77, Fi(x) is regular and | Fx(x) \ < 1. Now form 

Fi(x) — a0 
(1) G(x) = 

aoFi(x) + 1 

f See Duke Mathematical Journal, vol. 2 (1936), pp. 435-442. 


