identical transformation $A \rightarrow A$. Then \bar{U} may be chosen of type Δ, and the number ($\Gamma \cdot \Delta$) obtained is precisely (24).

Let us recall in concluding that the same formulas hold for transformations of compact metric HLC spaces. They are spaces endowed with a strong type of local connectedness in the sense of homology, analogous to that possessed by the so-called absolute neighborhood retracts. \dagger

Princeton University

CIRCLES IN WHICH $|F(x)|$ HAS A SINGULARITY OR ASSUMES PREASSIGNED VALUES

BY J. W. CELL

Let k be a given positive integer and let a_{0} and $a_{k} \neq 0$ be two given constants. Let $F_{k}(x)$ be any member whatever of the class C_{k} of functions which are regular in the neighborhood of the origin and which there have the expansion

$$
F_{k}(x)=a_{0}+a_{k} x^{k}+a_{k+1} x^{k+1}+\cdots,
$$

where a_{0} and a_{k} are the two given constants.
Theorem 1. Let $\eta\left(a_{0}, a_{1}\right)=0$ if $\left|a_{0}\right|=1$. In case $\left|a_{0}\right|<1$, let $\eta\left(a_{0}, a_{1}\right)=\left\{1-\left|a_{0}\right|^{2}\right\} /\left|a_{1}\right|$, and if $\left|a_{0}\right|>1$, let $\eta\left(a_{0}, a_{1}\right)=$ $\left\{2\left|a_{0}\right| \log \left|a_{0}\right|\right\} /\left|a_{1}\right|$. Then in or on the circle $|x|=\eta\left(a_{0}, a_{1}\right)$, either $F_{1}(x)$ has a singularity or $\left|F_{1}(x)\right|$ assumes the value one. Moreover, no smaller radius will do for the whole class of functions C_{1}.

Corollary. $\eta\left(a_{0}, 1\right)=\left|a_{1}\right| \eta\left(a_{0}, a_{1}\right)$.
Proof. If $\left|a_{0}\right|=1$, the theorem is granted, so we shall henceforth suppose that this is not the case. If $a_{0}=r e^{i \alpha},(r \geqq 0)$, we define $E(x)=e^{-i \alpha} F_{1}(x)$. Then $|E(x)|=\left|F_{1}(x)\right|$ and hence we may, with no loss of generality in the proof, suppose that a_{0} is real and non-negative.

Case $1.0 \leqq a_{0}<1$. There exists a positive number η such that for $|x| \leqq \eta, F_{1}(x)$ is regular and $\left|F_{1}(x)\right|<1$. Now form

$$
\begin{equation*}
G(x)=\frac{F_{1}(x)-a_{0}}{-a_{0} F_{1}(x)+1} \tag{1}
\end{equation*}
$$

\dagger See Duke Mathematical Journal, vol. 2 (1936), pp. 435-442.

This transformation maps $\left|F_{1}(x)\right|<1$ upon $|G(x)|<1$ and $\left|F_{1}(x)\right|=1$ upon $|G(x)|=1$. Hence when $|x| \leqq \eta, G(x)$ is regular and $|G(x)|<1$. We expand $G(x)$ in a power series which converges for $|x| \leqq \eta$ and obtain

$$
\begin{equation*}
G(x)=\frac{a_{1} x}{1-a_{0}^{2}}+\cdots \tag{2}
\end{equation*}
$$

We apply Cauchy's inequality for the first derivative and obtain $\eta \leqq\left(1-a_{0}{ }^{2}\right) /\left|a_{1}\right|$.

To show that $\eta\left(a_{0}, a_{1}\right)$ cannot be less than this amount and hence that the equality sign must persist if this is to be true for every member of the class C_{1}, subject to the condition $0 \leqq a_{0}<1$, it is sufficient to exhibit a particular member of C_{1} which is regular for $|x|<\left(1-a_{0}{ }^{2}\right) /\left|a_{1}\right|$ and which in this circle is less than one in absolute value. To this end we define a particular function $G(x)$ by the first term of the series (2) and thence a particular function $F_{1}(x)$ by the inverse of (1). This resulting function $F_{1}(x)$ is easily shown to have the requisite properties.

Let S be the region consisting of the interior and boundary of the circle $|x|=\eta\left(a_{0}, a_{1}\right)$. To complete the proof of the theorem for this case we must show that if $F_{1}(x)$ is regular throughout S, then $\left|F_{1}(x)\right|$ must assume the value one at least once in S. To that end we suppose that $F_{1}(x)$ is regular throughout S and that $\left|F_{1}(x)\right|$ is not equal to one at any point of S. Then, since $\left|F_{1}(0)\right|<1$, we would have $\left|F_{1}(x)\right|<1$ at every point of S. It would follow that $|G(x)|<1$ at every point of S. But by Cauchy's inequality,

$$
\left|G^{\prime}(0)\right| \leqq \frac{\max |G(x)|}{\eta\left(a_{0}, a_{1}\right)}
$$

or by using the series (2),

$$
\frac{1}{\eta\left(a_{0}, a_{1}\right)} \leqq \frac{\max |G(x)|}{\eta\left(a_{0}, a_{1}\right)}
$$

Hence $\max |G(x)| \geqq 1$, which is a contradiction. Thus either $F_{1}(x)$ is not regular at every point of S, or else $\left|F_{1}(x)\right| \geqq 1$ at some point of S. Now there exist members of the class C_{1} which are regular for all values of x in S and hence the contradiction shows, since $\left|F_{1}(0)\right|<1$, that $\left|F_{1}(x)\right|=1$ at some point of S.

Case 2. $1<a_{0}$. If $1<a_{0}$, there exists a positive number η such that for $|x| \leqq \eta, F_{1}(x)$ is regular and $\left|F_{1}(x)\right|>1$. We write

$$
\begin{equation*}
K(x)=\frac{\log F_{1}(x)-1}{\log F_{1}(x)+1} \tag{3}
\end{equation*}
$$

Let the region in the F_{1} plane consisting of the exterior and boundary of the unit circle with center at the origin be the region R. If we use the principal determination for $\log F_{1}(x)$, this transformation maps R on a circular arc triangle with vertices on the unit circle in the K plane and in such a way that the boundary of R (the circumference of the unit circle and the point at ∞) maps upon part of the circumference of the unitcircle in the K plane and the remainder of R upon the interior of this circle. The map for a general determination of the logarithm is a similar circular arc triangle with the same properties as to the image of the boundary of R and of its interior. Moreover, these circular arc triangles fill up, without overlapping, the interior of the unit circle in the K plane.

If we agree to use the principal determination for $\log F_{1}(x)$, then for $|x| \leqq \eta, K(x)$ is regular and $|K(x)|<1$. Then $K(x)$ has the power series expansion $K(x)=\alpha_{0}+\alpha_{1} x+\cdots$, where

$$
\alpha_{0}=\frac{\log a_{0}-1}{\log a_{0}+1}, \quad \alpha_{1}=\frac{2 a_{1}}{a_{0}\left(\log a_{0}+1\right)^{2}}
$$

We may apply the results of our former case to $K(x)$. We form $\left(1-\alpha_{0}{ }^{2}\right) /\left|\alpha_{1}\right|$ and obtain $\left(2 a_{0} \log a_{0}\right) /\left|a_{1}\right|$, which is $\eta\left(a_{0}, a_{1}\right)$ for this second case.

We replace a_{0} by $\left|a_{0}\right|$ in our results and thus obtain the theorem as stated.

Theorem 2. Let $\beta \neq 0$ be a positive real number and let $\phi\left(a_{0}, a_{1}, \beta\right)=\eta\left(a_{0} / \beta, a_{1} / \beta\right)$. Then in or on the circle $|x|=\phi\left(a_{0}, a_{1}, \beta\right)$ either $F_{1}(x)$ has a singularity or else $\left|F_{1}(x)\right|$ assumes the value β.

We define $L(x)=F_{1}(x) / \beta$ and apply Theorem 1 to $L(x)$ to prove this theorem.

Theorem 3. Let $\eta\left(a_{0}, a_{k}, k\right)=\left\{\eta\left(a_{0}, a_{k}\right)\right\}^{1 / k}$. Then in or on the circle $|x|=\eta\left(a_{0}, a_{k}, k\right)$, either $F_{k}(x)$ has a singularity or else $\left|F_{k}(x)\right|$ assumes the value one.

The proof of this theorem follows the same method as the proof of Theorem 1 with the exception that we now use Cauchy's inequality for the k th derivative instead of for the first derivative.

Theorem 4. Let $\theta\left(a_{0}, a_{1}\right)=0$ if $a_{0}=0$ or if $\left|a_{0}\right|=1$. Otherwise let $\theta\left(a_{0}, a_{1}\right)=\left|\left\{2 a_{0} \log \left|a_{0}\right|\right\}\right| a_{1} \mid$. Then in or on the circle $|x|=\theta\left(a_{0}, a_{1}\right)$, either $F_{1}(x)$ has a singularity or else $\left|F_{1}(x)\right|$ assumes the value zero or the value one.

We may, in the proof, suppose that a_{0} is positive and that $a_{0} \neq 1$. If $0<a_{0}<1$, we write

$$
G(x)=\frac{\log F_{1}(x)+1}{\log F_{1}(x)-1}
$$

and if $1<a_{0}$,

$$
H(x)=\frac{\log F_{1}(x)-1}{\log F_{1}(x)+1}
$$

In both cases the resulting function, for x interior to or on the boundary of an appropriate circle, is less than one in absolute value. We may then apply the result of the first case of Theorem 1 to complete the proof.

It is clear that theorems similar to 2 and 3 may be established as generalizations of Theorem 4 . We remark that the existence of the various radii in these theorems is implied by the PicardLandau theorems.*

North Carolina State College

[^0]
[^0]: * See E. Landau, Darstellung und Begründung einiger neuer Ergebnisse der Funktionentheorie, 1929.

