A NOTE ON YOUNG-STIELTJES INTEGRALS*

BY F. G. DRESSEL

Theorem 1. If $f(x)$ is bounded and measurable Borel, and $g_{1}(x), g_{2}(x)$ are of bounded variation, then the following equality holds:

$$
\begin{align*}
\int_{0}^{1} f(x) d\left[g_{1}(x) g_{2}(x)\right]= & \int_{0}^{1} f(x) g_{1}(x+0) d g_{2}(x) \\
& +\int_{0}^{1} f(x) g_{2}(x-0) d g_{1}(x) \tag{1}
\end{align*}
$$

Proof. In a recent article Evans \dagger showed that if $g_{1}(x)$ and $g_{2}(x)$ have no common points of discontinuity, then

$$
\int_{0}^{1} f(x) d\left[g_{1}(x) g_{2}(x)\right]=\int_{0}^{1} f(x) g_{1}(x) d g_{2}(x)+\int_{0}^{1} f(x) g_{2}(x) d g_{1}(x)
$$

Therefore (1) holds if either $g_{1}(x)$ or $g_{2}(x)$ are continuous. It remains to show that the theorem holds when $g_{1}(x)$ and $g_{2}(x)$ are both step functions. Under these circumstances we have

$$
\begin{aligned}
& \int_{0}^{1} f(x) g_{1}(x+0) d g_{2}(x)+\int_{0}^{1} f(x) g_{2}(x-0) d g_{1}(x) \\
&= \sum f\left(\alpha_{i}\right) g_{1}\left(\alpha_{i}+0\right)\left[g_{2}\left(\alpha_{i}+0\right)-g_{2}\left(\alpha_{i}-0\right)\right] \\
&+\sum f\left(\alpha_{i}\right) g_{2}\left(\alpha_{i}-0\right)\left[g_{1}\left(\alpha_{i}+0\right)-g_{1}\left(\alpha_{i}-0\right)\right] \\
&= \sum f\left(\alpha_{i}\right)\left[g_{1}\left(\alpha_{i}+0\right) g_{2}\left(\alpha_{i}+0\right)-g_{1}\left(\alpha_{i}-0\right) g_{2}\left(\alpha_{i}-0\right)\right] \\
&= \int_{0}^{1} f(x) d\left[g_{1}(x) g_{2}(x)\right]
\end{aligned}
$$

where the summations are taken over all the discontinuities of $g_{1}(x)$ and $g_{2}(x)$.

The following lemmas are immediate applications of equation (1).

[^0]Lemma 1. If $f(x)$ is positive, bounded, and Borel measurable, and $g_{1}(x), g_{2}(x)$ are monotone increasing, bounded, continuous on the left, then

$$
\begin{align*}
\int_{0}^{1} f(x) d\left[g_{1}(x) g_{2}(x)\right] \leqq & \int_{0}^{1} f(x) g_{1}(x) d g_{2}(x) \\
& +\int_{0}^{1} f(x) g_{2}(x) d g_{1}(x) \tag{2}
\end{align*}
$$

Lemma 2. If in Lemma 1 the $g_{1}(x)$ and $g_{2}(x)$ are monotone decreasing functions continuous on the right, the inequality sign in (2) is reversed.
W. C. Randels* used Lemma 1 in proving the existence of a solution of

$$
f(x)=m(x)+\lambda \int_{0}^{x} f(y) d K(x, y)
$$

In essentially the same manner, by making use of Lemma 2, we may prove the following theorem.

Theorem 2. If $g(x)$ is of bounded variation and if (a) $K(x, y)$ is Borel measurable in y for every x, (b) $K(x+0, y)=K(x, y)$, (c) $K(x, x)=0$, (d) $\left|K\left(x_{1}, y\right)-K\left(x_{2}, y\right)\right| \leqq\left|T\left(x_{1}\right)-T\left(x_{2}\right)\right|$, where the function $T(x)$ is bounded and non-decreasing with x, then

$$
\begin{equation*}
f(x)=g(x)+\lambda \int_{0}^{x} K(x, y) d f(y) \tag{3}
\end{equation*}
$$

has a unique solution of bounded variation.
Duke University

[^1]
[^0]: * Presented to the Society, November 30, 1935.
 \dagger G. C. Evans, Correction and addition to "Complements of potential theory," American Journal of Mathematics, vol. 57 (1935), pp. 623-626.

[^1]: * W. C. Randels, On Volterra-Stieltjes integral equations, Duke Mathematical Journal, vol. 1 (1935), pp. 538-542.

