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GENERAL TENSOR ANALYSIS* 

BY A. D. MICHAL 

1. Introduction. The coordinates of the traditional tensor 
analysis are points in a finite dimensional arithmetic space 
while those of the author's infinitely dimensional tensor analysis 
are points (functions) in a function space. The purpose of the 
present paper is to present the elements of a general tensor anal­
ysis that will include as instances the tensor calculi just men­
tioned. This general point of view has already been instrumental 
in the more elegant and further development of the function 
space instances. 

For a space of coordinates we take a Banach space. The geo­
metrical objects studied are contravariant vector fields, linear 
connections, multilinear forms and their covariant differentials. 
Non-holonomic geometric objects are not considered here, as I 
intend to pursue their study elsewhere. 

2. Abstract Coordinate Transformations. We consider a Haus­
dorff f topological space T whose neighborhoods are mapped 
homeomorphically on an open set 5 of a Banach space E by 
mapping functions called coordinate systems.% If two neighbor­
hoods intersect we have two mappings of their intersection on 
open subsets 5i and 52 of S. This establishes a homeomorphism 
x(x), called a coordinate transformation, that takes an open set 
Si c S into an open set 62 c 5. As further restrictions we demand 
that the Fréchet differentials x(x\ ôx) and x(x; 8x) of %{x) and 
its inverse x{x) exist in Si and S%, respectively. Finally, to deal 
with the law of transformation of a linear connection and with 
coyariant differentials, we shall assume that the second Fréchet 
differential x{x\ ôix\ h$x) exists in Si continuously in x. 

* Presented to the Society, April 11, 1936. 
t For the purposes of the present paper alone it is merely necessary to 

postulate that T is a Fréchet neighborhood space and that the coordinate 
systems are reciprocal (1-1) transformations. 

% All the results of the paper continue to hold if we take the coordinate 
systems to be homeomorphisms of Hausdorff neighborhoods onto open subsets 
SC S, where S is a fixed open set in E and is itself a homeomorphic map of 
some Hausdorff neighborhood. 
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Since x(x) and x(x) are mutually inverse, we see that x(x; ôx) 
is a solvable linear function* of ôx with x(x; ôx) as inverse. The 
symmetry of x(x; ôix; ô2x) in ôix and ô2x- follows from a theorem 
proved by Kerner.f An application of a theorem J of Michal and 
Elconin on solvable linear functions depending on a parameter 
shows that the second Fréchet differential x(x; ôix; ô2x) exists 
and is continuous in x throughout 52. On differentiating the evi­
dent identity x(x-; x(x] ôix)) = ôix we obtain the useful identity 

(1) x(x; ôix; ô2x) + x(x; x(x; ôix; ô2x)) = 0. 

The validity of this relation follows on making special use of a 
theorem§ on the total differential of a linear function that de­
pends on a parameter. In the sequel we shall refer to this theo­
rem as Theorem M. 

3. Covariant Differential of a Contravariant Vector Field and 
the Transformation Law of a Linear Connection, Let Po be any 
chosen point of the Hausdorff space T. A geometric object whose 
abstract components undergo the transformation £ = x(x(P0) ; £) 
will be called a contravariant vector (associated with P0) . To 
avoid long circumlocutions we shall say that £ is a contravariant 
vector. Similar abbreviations will be made for the components 
of other geometric objects. That a differential ôx is a contravari­
ant vector is clear from the evident formulas 

ôx — x(x; ôx), ôx = x(x; ôx). 

A contravariant vector field (c.v.f. for brevity) is a geometric 
object with abstract components. More precisely, to every 
Hausdorff neighborhood with coordinate system x(P) there 
exists a function (called component) i-(x) on S to E such that in 
the intersection of two Hausdorff neighborhoods ^(x) =x(x; %(x)) 
under a transformation of coordinates x — x(x). 

* A. D. Michal and V. Elconin, Differential properties of abstract trans-
formation groups with abstract parameters, American Journal of Mathematics, 
vol. 59 (1937), pp. 129-143. 

t M. Kerner, Annals of Mathematics, (2), vol. 34 (1933), pp. 546-572. See 
also A. D. Michal and V. Elconin, Completely integrable differential equations 
in abstract spaces (accepted for publication in the Acta Mathematica). 

î A. D. Michal and V. Elconin, Acta Mathematica, loc. cit. 
§ A. D. Michal, Postulates for a linear connection, Annali di Matematica, 

(1936), pp. 197-220. 
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Let £1 and £2 be two arbitrary contravariant vectors. The ob­
ject whose components T(x, £1, £2) and T(x, | i , | 2 ) are bilinear 
functions of the vectors will be called a linear connection* if, in 
the intersection of two Hausdorff neighborhoods, the compo­
nents have the law of transformation 

(2) T(x, fi, | 2 ) = x(x; T(x, £1, f2)) + *(*; x(x; fi; f2)) • 

With the aid of relation (1) we can immediately rewrite (2) in 
the equivalent form 

(3) T(x, i i , | 2 ) = * 0 ; T(x, £i, £2)) - x(>; fr; f2). 

THEOREM 1. Z,e/ tóe bilinear f unction T(x, £i, £2) iw tóe contra­
variant vectors £i, £2 Z>e tóe component in the x(P) coordinate system 
of an object with components. Then, a necessary and sufficient con­
dition that] 

(4) B£(x) + T(x,Z(x),ôx) 

be the component in the x{P) coordinate system of a contravariant 
vector field for every Frêchet differentiate contravariant vector field 
£(#) is that T(x, £i, £2) be the component of a linear connection. 

PROOF. T O prove the necessity of the condition we have by 
hypothesis 

(5) 6£(x) + T(x, £(â), ôx) = x(x; Ô£(x) + T(x, £(*), ôx)). 

But, since £(#.) is a differentiable contravariant vector field and 
the second differential x(x; ôix; ô2x) exists, it follows that ô£(x) 
exists and is given by 

(6) &%(%) — %(%', £(#)> &x) + %(x*> à£(x)) • 

* Further generalizations are possible. One can consider still another 
Banach space E\ and another type of contravariant vector field with com­
ponent V(x), a function on E to Ei, subject to a law of transformation 
V(x) = M(x, V(x)), where M(x, y) is a solvable function of y. The covariant 
differentials of multilinear forms F(x, &, £2, • • • , £n> Fi, F2, • • • , Vi) can then 
be developed with the aid of T(x, £, 8x) and another kind of linear connection 
K(x, V, ôx), a function as EE\E to Ei, whose law of transformation is 

K(x,~V, 8x) = M(x, K(x, V, ôx))-M(x, V; Ôx). 

f We shall often write the Fréchet differential ƒ (x; ôix) as 8if(x). 
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We thus obtain immediately the law of transformation 

(7) T(%, £(x), ôx) = x(x; T(x, £(x), ôx)) — x(x; £(x); ôx). 

The sufficiency of the condition follows by a reversal of the 
steps in the obvious manner. 

DEFINITION. If £(x) is a contravariant vector field and F(x, £, ôx) 
is a linear connection, then the contravariant vector field (4) will be 
called the covariant differential of £(x) and will be denoted by 
£(x| ôx). 

4. Covariant Differential of Multilinear Forms in Contravari­
ant Vector Fields. Our treatment of successive covariant differ­
entials will be made to depend on the results of the following 
fundamental theorem. 

THEOREM 2. Let T(x, £, ôx) be a linear connection and 
F(%, £i> £2, ' • • , £n) a function with the following properties: 

(i) F is a c.v.f. valued multilinear form in the n arbitrary con­
travariant vectors £1, • • • , £n; 

(ii) the partial Frêchet differential F(x, £1, £2, • • • , £nî ôx) exists 
and is continuous in x. 
Then the f unction F(x> £1, £2, • • • , £n| ôx) defined by the equation 

F(%> £i> £2, • • • , £n I ôx) = F(x, £1, £2, • • • , £w; ôx) 
n 

(8) - T,F(x, £1, • • • , £;-i, T(x, fc, ôx), £;+1, • • • , £n) 
t=i 

+ T(x,F(x,Hh £2, • • • ,{„),«*) 

is a c.v.f. valued multilinear form in £1, £2, • • • , £n, ôx. We shall call 
F(x, £1, • • • , £w| ôx) the covariant differential of F{x, £1, • • • , £n). 

PROOF. We shall give here the details of proof only for the case 
n = l as the method of proof for the general case differs in no 
essential manner from that of this special case. By hypothesis, 
then, we have 

(9) F(x,£) = *(x;F(x,Q), 

from which we obtain 

(10) F(x, £; ôx) = (j>(x, £; Ôx) - F(x, ô£), 
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where<t>(x, £) = x(x; F(x, £)). On using £ = x(x;Q,we find 

(11) 7 ( M ? ) = 7(«, *(*;* ;**)) . 

Hence (10) immediately reduces to 

(12) F(x, 1) ôx) = <j>(x, £; 8x) - F(x, x(x; £; Ôa)). 

From the laws of transformation (3) and (9), we evidently have 

(13) F ( # , r ( # , i , ôx)) = $(x;F(x,r(x,Ç,ôx))) - F(x,x(x;Ç;ôx)). 

From (3) we obtain also 

(14) T(x,F(x,J),Ox) = x(x;T(x,F(x,Q,Ôx)) - x(x; F(x,Ç);Ôx). 

With the aid of (12), (13), (14),and a special use of Theorem M 
on Fréchet differentials, we finally obtain the law of trans­
formation 

(15) F(x,l\ôx) = x(x]F(x,ï\ôx)), 

where 

F(x} %\ôx) = F(x, £; da) + T(x,F(x, £), 5 a?) 
(16) 

- F ( * , T ( * , {,«*)), 

and 

F(x, £ | Ox) = F(x, f ; 8x) + T(x, F(x, £), M) - F(S, T(^, £, &g)). 

By the Gateaux limit method of evaluating a Fréchet differ­
ential and by a theorem of Banach on the limit of a convergent 
sequence of linear functions, it can readily be shown* that 
F(x, £; ôx) is a bilinear function of £ and ôx. Hence the covariant 
differential F(x, £| ox) is bilinear in £ and ôx. 

Since the covariant differential of a c.v.f. valued multilinear 
form in n contravariant vectors is itself a c.v.f. valued multi­
linear form in n-\-\ contravariant vectors, we may apply Theo­
rem 2 repeatedly and obtain higher order covariant differentials 
F(x, £i, • • • , £n| 8ix\ • • • | ôrx) of the original multilinear form 
F(x, £i, • • • , £»). 

* A. D. Michal, Annali di Matematica, loc. cit. 
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Let %(x) be a contravariant vector field with a continuous 
second differential £(x; dix; Ô2X) in x and let the linear connec­
tion T possess a continuous partial differential T(x, £1, £2; Sx) 
in x. If we further assume that the coordinate transformations 
x(x) have continuous third differentials x(x; Six; 82x; 83X) in x, 
then it can be shown that x(x; Six; hx\ 8$%) exists and is con­
tinuous in x and that the above restrictions on £(#) and on the 
linear connection are invariant under such transformations of 
coordinates. If we then make special use of Theorem M, we 
find that 

£(# ôiX Ô2X) — £(# 82X I Six) = B(x, £ ( # ) , dix. Ô2X) 
(17) , 

— 2£(x I 0(#, 81X, 82x)), 

where B(xy £, Six, 82X), called the curvature form, is defined by 

B{x, £, 81X, 82X) = T(x, £, 8ix; 82X) — T(x, £, ô2#; 8ix) 
(18) 

+ T(x, T(x, £, 8ix), 82x) - T(x, T(x, £, 52#), $i#), 

and where Q(x, Six, 52#), called the torsion form, is defined by 

1 r > 
(19) £2(x, 5i#, 52#) = — \T(x, 81X, 82X) — T(xy 82X, 8ix) } . 

It follows from (3) and Kerner's theorem on symmetry of con­
tinuous second differentials that the torsion form ti(x, 8ix, 82x) 
is a c.v.f. valued bilinear form. Hence with the aid of Theo­
rem 1, Theorem 2, and (17), we see that the curvature form 
B(x, £, 81X, 82x) is a c.v.f. valued trilinear form. We can thus 
form the sequence of covariant differentials of the curvature 
form B(x, £1, £2, £3): 

B{x, £ly £2, £31 bix I • • • I 8rx), (r = 1, 2, • • • , n). 

In order that this sequence of covariant differentials exist it is 
sufficient to assume the existence of T(x, £1, £2; Six; • • • ; 8n+ix) 
and its continuity in x. These restrictions will be invariant under 
coordinate transformations if we assume that the coordinate 
transformations x(x) possess a continuous differential of order 
n + 3 in x. 

By a slight variation of the method of proof for Theorem 2, 
the following theorem can be proved. 
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THEOREM 3. If in the hypotheses of Theorem 2 we replace (i) by 
the following : 
(i') F is an absolute scalar multilinear form in then arbitrary con­
travariant vectors £i, • • • , £n, 
then the function F(x, £i, • • • , £n| Sx) defined by 

F(x, Ji, • • • , in | Sx) = F(x, fi, • • • , £M; ôx) 

(20) » 

w an absolute scalar multilinear form in £i, • • • , £n, Sx. We 
f̂eaZ/ /&ew call F(x, £i, • • • , £n| ôx) /fee covariant differential of 

F(X, Si» ' * * » £n). 

The conclusion of this theorem continues to hold if the nu­
merical valued form F is replaced by a form F with values in a 
Banach space. 

5. 77ze "Stokean" Covariant Differential of Alternating Forms. 
In this section we do not assume the existence of a linear connec­
tion. It is possible nevertheless to obtain with Fréchet differ­
entiation an absolute alternating form of one higher order from 
a given absolute alternating form in contravariant vectors. 

THEOREM 4. Letœ(x, £i, • • • , £n) be a function with the follow­
ing properties: 

(i) co is an absolute scalar multilinear form in the contravariant 
vectors fi, • • • , £n; 

(ii) co is alternating in £x, • • • , '£n (that is, completely skew-
symmetric) ; 

(iii) the second partial differential co(x, £i, • • • , ?n; Six; S2x) 
extós awd is continuous in x. 
Then under the transformations of coordinates of §3 : 

(Ci) the function co(x, £i, • • • , £n ' Sx), called the Stohean covari­
ant differential of co(x, £i, • • • , £w), defined by 

co(x, ( • ! , • • • , £™:Sx) = co(x, £i , • • • , £w; Sx) 

(21) n 

— 23 w(^> £i> • • • , k - i , Sx, &+i, • • • , { „ ; &), 

*=1 

is an alternating absolute scalar multilinear form in £i, • • • , £», Sx; 

(C2) co(x, £i, • • • , %n:ôix:ô2x) = 0. 
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It is clear from this theorem that the Cartan-Goursat cal­
culus of alternating forms* can be developed in Hausdorff 
spaces with Banach coordinates. 

In conclusion we note that Theorem 4 continues to hold if 
the numerically valued form o> is replaced by a form co with 
values in a Banach space. 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

ON A THEOREM OF E N G E L t 

BY MAX ZORN 

1. Introduction. The theorem of Engel which we intend to 
study in this paper deals with Lie algebras where an identity 
(a(a(a • • • (ab)) • • • )) = 0 holds for arbitrary elements a and b. 
Under various assumptions it has been shown that in this case 
all products with sufficiently many factors vanish. 

The latest result in this direction was a proof,} found first by 
van Kampen, which holds for finite Lie algebras over any field 
of characterstic zero. The method is rational, but it involves the 
theory of associative algebras and the theory of traces. Another 
proof of equal generality, with less accent, on the theory of 
traces, has recently been sketched by the writer.§ 

The new proof to be offered in the present paper dispenses 
with every apparatus of matrices, traces, and associative sys­
tems. It does not presuppose any knowledge about Lie systems. 
The material advantage of our direct method is the fact that 
no reference field is required, and that the question of character­
istics never enters the discussion. 

2. Definitions. DEFINITION 1. A system L of elements a, b, • • • 
is called a Lie ring (with respect to a commutative ring P of 

* E. Goursat, Leçons sur le Problème de Pfaff, 1922; E. Cartan, Leçons sur 
les Invariants Intégraux, 1922; E. Kahler, Einführung in die Theorie der 
Système von Differentialgleichungen, 1934. 

t Substituted for another paper, which was presented to the Society, 
June 18, 1936. See the last footnote on this page. 

% See N. Jacobson, Rational methods in the theory of Lie algebras, Annals of 
Mathematics, vol. 36, p. 875. 

§ See this Bulletin, Abstract 42-7-266. (Erroneously the theorem in ques­
tion is there attributed to Lie.) 


