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It is clear from this theorem that the Cartan-Goursat cal­
culus of alternating forms* can be developed in Hausdorff 
spaces with Banach coordinates. 

In conclusion we note that Theorem 4 continues to hold if 
the numerically valued form o> is replaced by a form co with 
values in a Banach space. 
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1. Introduction. The theorem of Engel which we intend to 
study in this paper deals with Lie algebras where an identity 
(a(a(a • • • (ab)) • • • )) = 0 holds for arbitrary elements a and b. 
Under various assumptions it has been shown that in this case 
all products with sufficiently many factors vanish. 

The latest result in this direction was a proof,} found first by 
van Kampen, which holds for finite Lie algebras over any field 
of characterstic zero. The method is rational, but it involves the 
theory of associative algebras and the theory of traces. Another 
proof of equal generality, with less accent, on the theory of 
traces, has recently been sketched by the writer.§ 

The new proof to be offered in the present paper dispenses 
with every apparatus of matrices, traces, and associative sys­
tems. It does not presuppose any knowledge about Lie systems. 
The material advantage of our direct method is the fact that 
no reference field is required, and that the question of character­
istics never enters the discussion. 

2. Definitions. DEFINITION 1. A system L of elements a, b, • • • 
is called a Lie ring (with respect to a commutative ring P of 

* E. Goursat, Leçons sur le Problème de Pfaff, 1922; E. Cartan, Leçons sur 
les Invariants Intégraux, 1922; E. Kahler, Einführung in die Theorie der 
Système von Differentialgleichungen, 1934. 

t Substituted for another paper, which was presented to the Society, 
June 18, 1936. See the last footnote on this page. 

% See N. Jacobson, Rational methods in the theory of Lie algebras, Annals of 
Mathematics, vol. 36, p. 875. 

§ See this Bulletin, Abstract 42-7-266. (Erroneously the theorem in ques­
tion is there attributed to Lie.) 
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scalar s p) if addition, a+b, multiplication, ab, and scalar multi­
plication, ap = pa, are defined such that (i) the addition defines a 
groupj (ii) the multiplication is distributive, (iii) scalar multipli­
cation is both distributive and associative, (iv) aa = 0, which implies 
ab+ba=^Q, (v) a(bc) +b(ca) +c(ab) = 0 (Jacobi's identity). 

Without loss of generality we assume that P contains ± 1 . 

DEFINITION 2. A subset 5 c L is a subring if it is closed under 
the operations of Definition 1. 

DEFINITION 3. The subring generated from the elements 
a, b, - - - and the subsets A, B, • • • of L is denoted by 
(a,b, • • • ,A,B, • • • ). 

DEFINITION 4. If Ai are subsets cL, b an element eL, then 
A1+A2 is the set of all elements ai+a2, where aieA; AiA2 the set 
of all products a\a2 ; A \b the set of all a\b ; Tb the set of all scalar 
multiples pb. 

In this terminology we may announce, for example, the follow­
ing theorem. 

THEOREM 1. If S is a subring and if Sb c S, then (S, b) = S+P&. 

Since multiplication is in general not associative, the position 
of parentheses is relevant. For the particular purposes of this 
paper the following conventions are useful. 

DEFINITION 5. 

axa2 - - - an-ian = ai(a2 • • • a») = (&i(a2( ' " * {a>n-\an)) • • • ) ) » 

a°b = b, anb = a(an~xb) = (a(a( • • • (a(ab))))), 

and correspondingly A B = B, AnB =A{An~lB), and so forth. 

Because of aa — 0, we may very well abandon the usual defi­
nition of a2, - - - , so that an alone does not denote an element 
of the ring. 

Addition and multiplication of subsets satisfy the distribu­
tive law 

(5 + T){M + N) cSM + SN + TM + TN. 

Iterated application of this distributivity inclusion yields the 
following result. 
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THEOREM 2. The set ( 5 + T)nL is contained in a sum of products 
of type 

(1) 2AS* • • • S^T^L, 

where e t > 0 for i ^ & , / » ^ 0 , X ^ + X l A " = ^-

Jacobi's identity, which takes now the form abc-\-bca-\-cab = 0, 
furnishes the following lemma. 

LEMMA l.IfSTcS,andM=-l-M, then TSMcSTM+SM. 

This shows that a product like TSTT • • • TS • • • SSTL is 
contained in the sum of two others, such that both still contain 
the same number of factors S, the first has ST instead of TS, 
and the second has one factor T less. From this we obtain the 
following lemma. 

LEMMA 2. If ST c 5, then T'*S« • • • S*»T'*L c S*l*L. 

DEFINITION 6. An element a (a subset A) is nilpotent if for a 
suitable exponent anL - 0 {respectively, AnL = 0). 

CONDITION (1, iii) implies that if an element / is nilpotent, 
then the set T=Ft is nilpotent. 

3. Proof of EngeVs Theorem. 

LEMMA 3. If a proper subring S is nilpotent, S*L = 0, then there 
exists an element t which is not contained in S and satisfies St c S. 

Indeed, since S8L^0 there must be a smallest exponent m 
such that Sm+lL = S(SmL) c S. The element t may consequently 
be taken as an arbitrary element of SmL which is not contained 
in 5. Such elements do exist, because 5 is a proper subring and 
m^O. 

If we denote Vt by T, we have ST c S and this (see Theo­
rem 1) makes S+ T a ring which contains S as a proper subring. 

LEMMA 4. If S and T are nilpotent, and if ST c S, then S+T is 
nilpotent. 

We shall see that if S8L = TlL — 0, this nilpotency is exhibited 
by (S+T)stL = 0. On account of Theorem 2, we have only to 
prove that 
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(2) ZAS* • • • S*»Tt*L = 0, if £ ei + E ƒ* ^ st. 
1 0 

Since the condition ST c S for (1) is fulfilled, (2) is certainly 
true if XX' = -̂ It *s a l s o trivially true if one fi should be ^t. 
In any other case we should have at most s exponents fi ; their 
sum would be at most (t— l)s, and the total sum E ^ + X l f ; 
would be smaller than st. Hence there are no such cases, and 
Lemma 4 is proved. We are now ready to prove Engel's Theo­
rem in the following general form. 

ENGEL'S THEOREM. If the elements of a subring R are nilpotent, 
and if in each system of subrings < R there is at least one which is 
maximal in the system, then R is nilpotent. 

For let 5 be a maximal nilpotent proper subring of R. Lemma 
3 shows that it is contained (properly) in a ring 5 + T c R, where 
STcS; T=Vt is nilpotent. Lemma 4 makes S+T nilpotent, 
and because it is really greater than S it must be the improper 
subring R. Hence R is nilpotent. 
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