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ON AN INTEGRAL TEST OF R. W. B R I N K FOR 
T H E CONVERGENCE OF SERIES 

BY C. T. RAJAGOPAL 

1. Introduction. The test in question is embodied in the fol
lowing theorem due to R. W. Brink.* 

Let^^Un be a series of positive terms. Also let r(x) be a function 
such that (i) r(n) = rn = un+i/unj (ii) 0<\^r(x) ^jit, (iii) rf{x) ex
ists and is continuous, /°°| rf(x) | dx is convergent. Then the conver
gence of the integral 

ƒ 00 

eS
xlogr(t)dtdx 

is necessary and sufficient for the convergence of the series ^^Un. 

It is the object of this note to show that Brink's theorem can 
be expressed in a more general form (Theorem 3 below) which 
leads at once to all the ratio tests for the convergence of series 
associated with Rummer's test. The ratio tests are thus welded 
into unity from a point of view somewhat different from that 
adopted by Pringsheim in his classical paper Allgemeine Theorie 
der Diver genz und Convergenz von Reihen mit positiven Gliedern.\ 

2. Connection of Brink's Theorem with the Maclaurin-Cauchy 
Integral Test. The problem which confronts us in Brink's theo
rem is clearly that of setting up an integral fxF(t)dt whose be
haviour at infinity is reflected by a given series ^°un. When 
^y°un has all but a finite number of terms positive, the method 
employed to establish the Maclaurin-Cauchy integral test shows 
that the convergence of f°°F(x)dx is sufficient for that of ^Tj°un 

if for n^x^n + 1, 0<un^F(x), (n = m, m + l, • • • ). Denoting 
un+\/un by rn, the condition assumed is that 

F(x) 
rw_i-rn_2 • • • rm ^ ; (n ^ x ^ n + 1), 

um 

* R. W. Brink, A new integral test for the convergence and divergence of infinite 
series, Transactions of this Society, vol. 19 (1918), p. 188. 

f Mathematische Annalen, vol. 35 (1890), pp. 359-372. 
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that is, 
n^i F(x) F{m) 
2L< l o g rv ^ l o g — — + log -

-ƒ. 

F(m) um 

* F'(t) Fim) 
dt + \og—~. 

or, 

F'(t) "1 f*F'(t) F(m) n- i r r^F\t) "I / - « n O i 
>" log r„ - J/ - — * ^ log- • ) F(t) J Jn F{t) u„ 

(n ^ # ^ ^ + 1). 

The right-hand member of the above inequality may be altered 
to any arbitrary constant; for this would merely imply the mul
tiplication of F(x) by a positive constant in our initial hypothe
sis. Also, for the truth of the altered inequality the following 
conditions are sufficient : 

F'(*) 
(i) is bounded and integrable for x ^ m, 

F{x) 
f " +l F'(x) 

(ii) logr„ - I — — dx ^ S„, 
Jv F(x) 

where YlnSv is bounded above as n—>oo , which is a consequence 
of 

F'(x) 
log r, —- ^ <5„, (v ^ x ^ v+ 1). 

F(x) 

If we put Ff(x)/F(x) =f(x), the integral whose convergence is 
sufficient for that of J2 un assumes the form J"efXfmdx. Fur
ther, the divergence of this integral is sufficient for the diver
gence of ^2°°un provided that in (ii) above the inequality sign is 
reversed and ^2nôv is bounded below. Hence we are led to formu
late the test as follows. 

THEOREM 1. Let X}°°^n be a series of positive terms and 
rn = un+i/un. If 

(i) f{x) is bounded and integrable f or x^nt, and 
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ƒ 00 

ef
xfWdtdx is convergent, 

ƒ 00 

eSXf(t)dtdx is divergent} ; 

(ii) for n^x^n + 1, 

n 

(Q): log rn S ƒ(#) + 8n, ]T) ô" being bounded above, 
n 

{or (D) : log rn ^ f(x) + 5n', ] £ ^ being bounded below} ; 

then ^j°Mn is convergent {or divergent}. 

The direct proof of the theorem is exactly on the lines of that 
of Theorem 2 given below. 

BRINK'S INTEGRAL TEST. This is an immediate deduction 
from Theorem 1. For if r(x) is defined as in Brink's theorem, 
then 

/

•* r'(f) 
~7Tdt> 

n r(t) 
and 

I /» n+l 
| log r{x) - log rn | ^ — I | r'{t) \dt, (n ^ x ^ n + 1). 

X J n 

Hence replacing ƒ(#) by log r{x) and taking 

S„ = - I r'{t) \dt, Ô„' = - - I r'(*) I J / , 
\ J n A */n 

we see t ha t^ j j 0 0 ^ converges or diverges with 

ef
xlo&r{t)dt^x% ƒ 

Thus Theorem 1 includes Brink's integral test, as one of his 
own theorems in the Annals of Mathematics* includes Hardy's 
generalization of the Maclaurin-Cauchy integral testf 

* R. W. Brink, A new sequence of integral tests for the convergence and diver
gence of infinite series, Annals of Mathematics , (2), vol. 21 (1919-20), p . 41 . 

t G. H . Hardy , Theorems connected with Maclaurin' s test f or the convergence 
of series, Proceedings of the London Mathematical Society, (2), vol. 9 (1911). 
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3. Preliminary Theorems and Deductions. Theorem 1 admits 
of the following generalization. 

THEOREM 2. Let ^YTun be a series of positive terms and 
rn = un+i/un. If 

(i) (Dn) is a strictly increasing sequence tending to infinity, 
(ii) dn=Dn-Dn-i = 0(l); 
(iii) f(x) is bounded and integrablefor x^Dm, and 

ƒ 00 

eSXf(t)dtdx is convergent, 

ƒ 00 

efxf^dtdx is divergent} ; 

(iv) for D „ - i ^ ^ D n , 

1 » 
(Q) : —log rn ^ f(x) + ôn, 2-r àÂv being bounded above, 

dn 

\ or (D) : — log rn ^ f(x) + ôn' , ]T) ^ dv being bounded below > ; 
\ dn ) 

then ^y°undn is convergent {or divergent}. 

PROOF OF CASE (Q). Since 

1 
— log r, ^ f{t) + ö„ (ZV-i £t£D,), 
dp 

by integration, 

f(t)dt + Ôvdv. 
Dv-i 

Sum for v — m + l,m + 2, • • • , w — 1 ; then 

un r Dn-i «-J un C Dn~l Z^i 
log ^ f(t)dt+ EM, 

^ra - f 1 ** Dm v~m-\-l 

< f H 1f(t)dt + Kl9 (Kx fixed). 

Also, for Dn-^x^Dn, since | / ( / ) | <M (fixed), dn<K (fixed), 
we have 



I937-] INTEGRAL TEST OF BRINK 409 

- KM < 

Add the last two inequalities ; then 

r AW. 

log < I f{t)dt + Ki + KM, (£>„_! < x ^ Dn), 

and 

un < Um+^+^eSZjw, (ZV-i ^ x S Dn). 

Hence, integrating from Dn-\ to Dn, we have 

efDj 
D , 

undn < um+1e
K^KM I eSiJWdx. 

JDn-l 

Compare the series ^2°°undn with the series of positive terms 
]C"*Ji)Z-ieJBJ{t)dtdxy and the test for convergence (Q) follows 
at once. The test for divergence (D) is similarly proved. 

The following is an adjunct to Theorem 2. 

THEOREM 2a. In Theorem 2, suppose the condition dn = 0(l) is 
dropped and f(x) < 0 (that is, the integrand in the test integral is 
a strictly decreasing f unction). If other conditions remain the same 
2J*un+idn is convergent in case (Q) and 2_, Uftfil/fi i/S divergent in 
case (D). 

A slight modification is required in our former proof of (Q) : 

un+i r Dn 

l o g — — < f(t)dt + K!. 

Also, for Dn-.x^x^Dni 

f(t)dt. 
x 

We add the last two inequalities, and obtain 

l o g — < f Xf(t)dt + K1} (D^i Sx^ Dn); 

whence, as before, 
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J * Dn 

e^Dm
nt)dtdx, 

n t 
and the desired result follows by comparison. 

DEDUCTIONS FROM THEOREM 2a. (i) Taking ƒ(x) = —p<0, 
3n = 0, and putting un+idn = an, we see that the condition 

1 an - dn-i 
— log — ^ - p < 0 
an an~i • dn 

is sufficient* for the convergence of X)°°a». 
(ii) The condition 

1 an-dn-i 1 1 
_ log ^ . . . 
dn dn-i ' dn Dn-.\ Dn—i - /iZ)n_i 

Dn-l'hDn-l ' ' ' lpDn-i 
( « > 1 ) , 

where hDn-i = log Dn-i , hDn-i = log log Z>n_i, • • • (and n ^ m + 1 
which is such that lpDm>0), is sufficient for the convergence of 
2°°a». For this implies that 

1 un+i 1 1 a 
— log < • • • . 

•/xX # - £ i X • • • l„X 

Hence taking 

1 1 a 
ƒ(*) = —-, (a > 1);8, = 0, 

X X * l\0C 00 ' i\00 * ' ' IpOC 

we deduce the convergence of ^°°an . 
(iii) Similarly the condition 

1 aw+i • dn 1 1 a 
— log > • • • * ^» Q>n ' dn+i Dn Dn • l\Dn Dn • l\Dn • • - lpDn 

( « ^ i ) , 
is sufficient for the divergence of 2^°°an. 

Setting Dn = n in (ii) and (iii), we obtain Bertrand's loga
rithmic criteria for convergence and divergence. 

* A. Pringsheim, loc. cit., p. 370. 
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4. Generalization of Brink's Theorem. 

THEOREM 3. LetYTan be a series of positive terms. If 
(i) (Dn) is a strictly increasing sequence tending to infinity ; 
(ii) dn=Dn-Dn-i = 0(l); 
(iii) f(x) has a continuous derivative f ' (x) and fco\ff(x)\dx is 

convergent; 

ƒ 00 

ef
xf(t)dt(jx js convergent, 

ƒ 00 

eSXf(t)dtdx is divergent} ; 

(v) ( O : - l o g - t — =S/(Dn), 
dn an-dn+i 

{or, (D): - l o g - t — * f(Dn)\; 
dn an ' dn+\ 

then ^°an is convergent {or divergent ) . 

PROOF OF (Q). Denoting an/dn by un> we have in the notation 
of Theorem 2, 

— l o g f n ^ f nf(t)dt+f(x) 
dn

 J x 

^ f n | ƒ'(*) | dt+f(x), (Z>n_x S x < Dn). 
J i > n - 1 

Whence, choosing ô w = / ^ J / / ( / ) \dt in Theorem 2, we deduce 
the convergence of 2 ° ° W » 4 S I ] \ . 

Proof of (D) is similar. 

DEDUCTIONS FROM THEOREM 3. (i) If 

1 , Vn+l-dn .^ N 

- l o g — — = ƒ(£„), 
dn an • ön+i 

then, under the conditions assumed, the convergence of 

ƒ 00 

ef'M*d% 
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is necessary and sufficient for the convergence of X^°°an- When 
Dn = nf we have Brink's theorem. 

(ii) Taking ƒ (x) = —p <0 , we see that the condition 

1 an+i'dn 

— log — rg - p < 0 
an dn ' dn+i 

is sufficient for the convergence of ^J*an* Since l o g 7 ^ 7 ~ 1, 
(7 >0) , it follows that the above condition can also be expressed 
in Kummer's formrf 

1 /dn+l'dn \ ^ 
— I 1) ^ - p < 0. 
dn \an • dn+x / »+i 

(iii) Taking 

1 1 a 
ƒ(*) = _ _ , (a > 1), 

X X ' v\X X ' l\X ' ' ' vpX 

we observe that the condition 

1 a>n+i ' dn — log 
dn Q>n ' dn+i 

1 /an+i-dn \ 
r, — I 1 ) 

dn \an - dn+i / j 

1 

Dn Dn-hDn 

a 
(« > i ) , 

Dn'llDn ' ' ' lpDn 

is sufficient for the convergence of ^°°an. 
The corresponding divergence criterion has already been 

given. 

MADRAS CHRISTIAN COLLEGE, 

TAMBARAM, SOUTH INDIA 

* A. Pringsheim, loc. cit., p. 371. 
f A. Pringsheim, loc. cit., p. 361, footnote. 


