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ON AN INTEGRAL TEST OF R. W. BRINK FOR
THE CONVERGENCE OF SERIES

BY C. T. RAJAGOPAL

1. Introduction. The test in question is embodied in the fol-
lowing theorem due to R. W. Brink.*

Let Y “u, be a series of positive terms. Also let r(x) be a function
such that (1) r(n) =#, = tny1/ths, (i1) 0 <N =7(x) Sy, (iii) 7'(x) ex-
ists and is continuous, [ °°| r'(x) I dx 1s convergent. Then the conver-
gence of the integral

f ef”logr(t)dtdx

is necessary and sufficient for the convergence of the series Y uy.

It is the object of this note to show that Brink’s theorem can
be expressed in a more general form (Theorem 3 below) which
leads at once to all the ratio tests for the convergence of series
associated with Kummer’s test. The ratio tests are thus welded
into unity from a point of view somewhat different from that
adopted by Pringsheim in his classical paper Allgemeine Theorie
der Divergenz und Convergenz von Reihen mit positiven Gliedern.t

2. Connection of Brink’s Theorem with the Maclaurin-Cauchy
Integral Test. The problem which confronts us in Brink’s theo-
rem is clearly that of setting up an integral [*F(¢)d¢t whose be-
haviour at infinity is reflected by a given series ) “u,. When
> “u, has all but a finite number of terms positive, the method
employed to establish the Maclaurin-Cauchy integral test shows
that the convergence of [*F(x)dx is sufficient for that of ) "u,

if forn2x=n+1, 0<u,<F(x), (n=m, m—+1, - - - ). Denoting
Uny1/%n DY 7, the condition assumed is that
F(x)
7n—1'rn—2"'7’m§ ) (néxén—l-l),
Um

* R. W. Brink, A new integral test for the convergence and divergence of infinite
series, Transactions of this Society, vol. 19 (1918), p. 188.
t Mathematische Annalen, vol. 35 (1890), pp. 359-372.
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that is,
Z logr, = log F@) + logF(m)
v=m ( ) Um
a0 F(m)
- fm pg “TleT
or,

> [ LT I PP}

y—m p F(t) F(t) Um
m=2x=n41).

The right-hand member of the above inequality may be altered
to any arbitrary constant; for this would merely imply the mul-
tiplication of F(x) by a positive constant in our initial hypothe-
sis. Also, for the truth of the altered inequality the following
conditions are sufficient:

L Fl(@) :

i) - is bounded and integrable for x = m,
F(x)

(ii) 1 f () )

ii) log 7, ,, F(x) dx = 5,,

where D_"8, is bounded above as n— «», which is a consequence
of
F'(x)
log r, — -

F(x)

If we put F’(x)/F(x) =f(x), the integral whose convergence is
sufficient for that of ) “u, assumes the form [“¢” T®dgy. Fur-
ther, the divergence of this integral is sufficient for the diver-
gence of Z”un provided that in (ii) above the inequality sign is
reversed and Y_"3, is bounded below. Hence we are led to formu-
late the test as follows.

IIA

5, =2x=v+1).

THEOREM 1. Let D “u, be a series of positive terms and

Vo =Uns1/Un. If
(1) f(x) is bounded and integrable for x=m, and
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0
®: f e/ I WOddy is convergent,

{or (D): f eI W0dy is divergent) ;
(ii) forns=x=n-+1,
®): log 7, < f(x) + 8., 2 8, being bounded above,

{or (D): log 7. = f(%) + 8., > 8 being bounded below} ;
then D u, is convergent {or divergent}.

The direct proof of the theorem is exactly on the lines of that
of Theorem 2 given below.

Brink's INTEGRAL TEsT. This is an immediate deduction
from Theorem 1. For if 7(x) is defined as in Brink’s theorem,
then

log 7(x) — log 7. =,fx :(<:)) dt,

and .
1 n+1
Ilogr(x)-—logr,,]éyf |r’(t)|dt, r=x=n+1).

rlence replacing f(x) by log 7(x) and taking
1 n+1 1 n+1
by = Tj:, | (8 | at, o = — —{fn | (2 | dt,

we see that ) “u, converges or diverges with
0
f ef’logr(t)'dtdx.

Thus Theorem 1 includes Brink’s integral test, as one of his
own theorems in the Annals of Mathematics* includes Hardy’s
generalization of the Maclaurin-Cauchy integral test?

* R. W. Brink, 4 new sequence of integral tests for the convergence and diver-
gence of infinite series, Annals of Mathematics, (2), vol. 21 (1919-20), p. 41.

t G. H. Hardy, Theorems connected with Maclaurin's test for the convergence
of series, Proceedings of the London Mathematical Society, (2), vol. 9 (1911).
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3. Preliminary Theorems and Deductions. Theorem 1 admits
of the following generalization.

THEOREM 2. Let ) °u, be a series of positive terms and
V0 =Ups1/Un. If

(1) (D,) is a strictly increasing sequence tending to infinity;

(ii) dn=D,—D,1=0(1);

(iii) f(x) is bounded and integrable for x = D ., and

0
@®: f e/ Wdtdy is convergent,

{or (D): f e/ TWatdy is divergent} ;

(iv) for Dn_léx éDny

n

1
®: —d—log o < f(%) + 6., 2 8,d, being bounded above,

n

1 n
{or (D): d—log rm = f(x) + 6., D 8! d, being bounded below} ;

n
then Y u,d, is convergent {or divergent|.

ProoF oF CasE ((°). Since
1
E log 7y _S__ f(t) "‘|" Bv, (Dv——l é ¢ é D»)~
by integration,

Dy
log r, < f®)dt 4 6,4,.

Dy—1
Sum for v=m+1,m+2, - - -, n—1; then
un Dy—y

n—1
log < f(hdt + 3 6.4,

Um+t1 Dy, y=m-+1

Dy
< f f(t)dt + Kl, (K1 ﬁxed) .

D,

Also, for D, 1<x=<D,, since |f(£)| <M (fixed), d, <K (fixed).
we have
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kM < | jwa.
Dp—1

Add the last two inequalities; then

Un

< f@®dt+ K.+ KM, (Dpy < x £ D,),
Um+1 Dy

log

and

U < um+13Kl+KMe‘/bmf(t)dt, (Dn—l Sx = Dn)-

Hence, integrating from D, ; to D,, we have

Dy
Uy < Uy eKTES f e/pa (Datdy,
Dp—1

Compare the series Y u,d, with the series of positive terms
> [P es5fWitdx, and the test for convergence () follows
at once. The test for divergence (D) is similarly proved.

The following is an adjunct to Theorem 2.

THEOREM 2a. In Theorem 2, suppose the condition d,=O0(1) is
dropped and f(x) <O (that is, the integrand in the test integral is
a strictly decreasing function). If other conditions remain the same
E”un+1d,, is convergent in case ((°) and Z”undn is divergent in
case (D).

A slight modification is required in our former proof of ((?):

un+1

Dy
< | fwat+ K.
Um+1 Dp,

Also, for D, 125 =D,

log

Dy
0= — | fdr.

We add the last two inequalities, and obtain

Unp, z
2 < | swar+ k&, (Dot £ & < Dy);
Um+1 Dy,

log

whence, as before,



410 C. T. RAJAGOPAL [June,

D"
Unt18n < um+13K1f eJand Datdy
Dyt

and the desired result follows by comparison.

DepuctioNs FROM THEOREM 2a. (i) Taking f(x) = —p <0,
8, =0, and putting %,.d,=a,, we see that the condition
1 1 dn'dn_l < <0
—_— O —_—_— = —
dn g an—l'dn P
is sufficient* for the convergence of ) “a,.
(ii) The condition

1 dn'dn_1 1 1
— log - < — - - ...
dn an—l'dn Dn—-l Dn—l'lIDn—l
a
- ) (> 1),
Dn—l'lan—l e l;an—l
where 4D, 1=log D, 1, leD, 1=loglog D,_4, - - - (and n=m—+1

which is such that /,D,,>0), is sufficient for the convergence of
0 . . .
> “a,. For this implies that

1 Un+1 1 1 (04
— log fE———_— = = — ,
d, Un x x- x-hiw -
(a>1;Dp1 = x = D,)
Hence taking
1 1 a
f@) = ==~ — (@ > 1);, =0,
® -l Xl Iy

we deduce the convergence of )_~a,,.
(iii) Similarly the condition
1 Guyr-dn 1 1 «

— 10g )
dn Ay dn+1 Dn Dn . lan Dn . lan e lpDn

(=1,

is sufficient for the divergence of Z‘”a,,.
Setting D, =n in (ii) and (iii), we obtain Bertrand’s loga-
rithmic criteria for convergence and divergence.

* A. Pringsheim, loc. cit., p. 370.
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4. Generalization of Brink's Theorem.

THEOREM 3. Let Y "a, be a series of positive terms. If

(i) (D) s a strictly increasing sequence tending to infinity;

(ii) dp=Dp—D,1=0(1);

(iii) f(x) has a continuous derivative f'(x) and [ °°‘ il (x)ldx s
convergent;

(iv) ®: f e/" I Wdtdy §s convergent,

{or, (D): f e/ TWatdy is divergent} ;

1 dn+1‘dn
(v) ©: — log = f(Da),
dn (22 n+1
1 Apg1* dn
{or, (D): — log = f(D,) } ;
dn an* dn+1

then Y a, is convergent {or divergent}.

Proor oF ((°). Denoting a./d, by u,, we have in the notation
of Theorem 2,

1 Dy
= log 7, < f@®dt + f(x)

n

Dn
s [Tlrolatiw,  @ases.

Whence, choosing §, = f11>)1?.1| I (t)ldt in Theorem 2, we deduce

the convergence of Y_ “u,d, =" a,.
Proof of (D) is similar.

DEebpucTtioNs FRoM THEOREM 3. (i) If

1 Any1° dn
— log
dy A Cpi1

= f(D),

then, under the conditions assumed, the convergence of

)
f ef’f(‘)dtdx



412 C. T. RAJAGOPAL (June,

is necessary and sufficient for the convergence of ) “a,. When
D, =mn, we have Brink’s theorem.
(ii) Taking f(x) = —p <0, we see that the condition

is sufficient for the convergence of ) %a,.* Since logy<vy—1,
(v>0), it follows that the above condition can also be expressed
in Kummer’s form:?

1 f6ny1-dy
—-( * —1>§-—p<0.

@n \On dpt1
(iii) Taking
1 a
f(x)__.__._______.———— ,(a>1),
x x-hx x-hx Iy

1 a”+1'dn 1 1
—_ log é —_— e ——— e
dn am'dn+1 Dn Dn lan
1 fan41dn
or, _—< = - 1) - - » (> 1),
dn an'dn+l Dn’lan e lpDn

is sufficient for the convergence of ) ~a,.
The corresponding divergence criterion has already been
given.

MabprAs CHRISTIAN COLLEGE,
TAMBARAM, SouTH INDIA

* A. Pringsheim, loc. cit., p. 371.
t A. Pringsheim, loc. cit., p. 361, footnote.



