ON A CLASS OF RECURRENT SEQUENCES*

BY H. E. ROBBINS

The first example of a recurrent, non-periodic sequence was given by Marston Morse \dagger in connection with the geodesics on a surface of negative curvature. A discussion of their significance, together with a general method of definition may be found in Birkhoff's Dynamical Systems, 1927, p. 246. In this note they will be considered independently of their origin, and a class of such sequences with certain interesting properties will be defined. (Theorem 1 of the present paper, except insofar as it refers to the particular sequence under discussion, is therefore not new.) As a preliminary to this we shall make certain definitions.

A sequence is a doubly-infinite row of the symbols 1 and 2: $\cdots c_{-3} C_{-2} c_{-1} c_{0} c_{1} c_{2} c_{3} \cdots$, where each c_{i} is either a 1 or a 2 . A block is a set of consecutive members of a sequence: $c_{m} c_{m+1} \cdots c_{n}$ and has length s if there are s symbols in it. A sequence is periodic if there exists an integer p such that $c_{n+p}=c_{n}$ for all n. A sequence is recurrent if there exists a function of integers $f(n)$ with integral values, such that any block of length n chosen anywhere in the sequence is contained as a block in any block of length $f(n)$. The least such function $f(n)$ will be called the ergodic function of the sequence.

As an example of such a sequence, let
$a_{0}=12, \quad a_{1}=a_{0}^{-1} a_{0} a_{0}=211212, \cdots, a_{n+1}=a_{n}^{-1} a_{n} a_{n}, \cdots$.
To define our sequence we number the symbols starting with the original

$$
\begin{aligned}
& \cdots c_{0} c_{1} \cdots \\
& \cdots 12 \cdots
\end{aligned}
$$

which has been underlined above. We may omit a more precise definition of the nth symbol since it will be unnecessary for our present purpose. We note that

[^0]$$
\left(a_{n}^{-1} a_{n} a_{n}\right)^{-1}=a_{n}^{-1} a_{n}^{-1} a_{n}
$$
where, as above, a_{n}^{-1} denotes the symbols of a_{n} in reverse order.
Theorem 1. The sequence thus defined is recurrent but not periodic.

Proof of Recurrence. First of all we note that there are $2 \cdot 3^{n}$ symbols in the nth stage of the construction, a_{n}. Now let us choose any block of length s :

$$
\begin{equation*}
c_{m+1} c_{m+2} \cdots c_{m+s} \tag{1}
\end{equation*}
$$

and let n be the smallest integer such that $2 \cdot 3^{n} \geqq s$.
Since for any m the sequence may be regarded as built up of a succession of blocks a_{m} and $a_{m}{ }^{-1}$ in some order, it follows that the block (1) must be contained in one of the following blocks:

$$
\begin{equation*}
a_{n} a_{n}, \quad a_{n} a_{n}^{-1}, \quad a_{n}^{-1} a_{n}, \quad a_{n}^{-1} a_{n}^{-1} \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
& a_{n+1}=a_{n}^{-1} a_{n} a_{n}, \quad a_{n+1}^{-1}=a_{n}^{-1} a_{n}^{-1} a_{n}, \\
& a_{n+2}=a_{n+1}^{-1} a_{n+1} a_{n+1}=a_{n}^{-1} a_{n}^{-1} a_{n} a_{n}^{-1} a_{n} a_{n} a_{n}^{-1} a_{n} a_{n}, \\
& a_{n+2}^{-1}=a_{n}^{-1} a_{n}^{-1} a_{n} a_{n}^{-1} a_{n}^{-1} a_{n} a_{n}^{-1} a_{n} a_{n},
\end{aligned}
$$

and each of the blocks (2) is contained in both a_{n+2} and a_{n+2}^{-1}. It follows that the block (1) is contained in any block of length twice the length of a_{n+2}, that is, of length $4 \cdot 3^{n+2}$. So if we set $f(s)=4 \cdot 3^{n+2}$, the sequence is recurrent with ergodic function at most equal to $f(s)$. To express $f(s)$ explicitly in terms of s, or rather, to get an upper bound for it, we proceed as follows. By definition, n is the smallest integer such that $2 \cdot 3^{n} \geqq s$, that is, such that $n \geqq \log _{3}(s / 2)$. Therefore, $n<\log _{3}(s / 2)+1$. It follows that

$$
f(s) \leqq 4 \cdot 3^{n+2}<4 \cdot 3^{\log _{3}(s / 2)+3}=4 \cdot \frac{s}{2} \cdot 27=54 \cdot s
$$

that is, $f(s)<54 \cdot s . *$
Proof of Non-Periodicity. It is easily seen that periodic sequences have ergodic functions of the form $f(n)=n+c$, where

[^1]c is some constant. We shall show that the ergodic function of our sequence is not of this form. The proof will be based on the following lemma.

Lemma 1. For all $n=1,2,3, \cdots$ the block a_{n}^{-1} is not contained in $a_{n} a_{n}$ or in $a_{n} a_{n}^{-1}$ or $a_{n}^{-1} a_{n}$, except as the initial or final block in the latter two.

Proof.

$$
\begin{aligned}
a_{1} a_{1} & =211212211212, \\
a_{1}^{-1} a_{1} & =212112211212, \\
a_{1} a_{1}^{-1} & =211212212112,
\end{aligned} \quad a_{1}^{-1}=212112
$$

and the assertion is obvious on inspection. Now suppose the assertion true for $n=m$. By definition

$$
\begin{aligned}
a_{m+1} & =a_{m}^{-1} a_{m} a_{m}, \quad a_{m+1}^{-1}=a_{m}^{-1} a_{m}^{-1} a_{m} \\
a_{m+1} a_{m+1} & =a_{m}^{-1} a_{m} a_{m} a_{m}^{-1} a_{m} a_{m} \\
a_{m+1}^{-1} a_{m+1} & =a_{m}^{-1} a_{m}^{-1} a_{m} a_{m}^{-1} a_{m} a_{m} \\
a_{m+1} a_{m+1}^{-1} & =a_{m}^{-1} a_{m} a_{m} a_{m}^{-1} a_{m}^{-1} a_{m}
\end{aligned}
$$

and inspection again shows the truth of the assertion for $n=m+1$. Now to show non-periodicity, we choose some $n=1,2$, $3, \cdots$ such that $2 \cdot 3^{n}>c$, where c is an arbitrary positive integer. The blocks a_{n}^{-1} and $a_{n} a_{n}$ both occur in the sequence, but the length of $a_{n}^{-1}=2 \cdot 3^{n}$, the length of $a_{n} a_{n}=4 \cdot 3^{n}>2 \cdot 3^{n}+c$, while $a_{n} a_{n}$ contains no sub-block of the form a_{n}^{-1} by the lemma. Thus our sequence cannot be periodic. This concludes the proof of Theorem 1 . We may state explicitly the following corollary.

Corollary. There exist recurrent, non-periodic sequences whose ergodic functions are bounded above by linear functions (without constant terms).

Having obtained a recurrent, non-periodic sequence whose ergodic function is bounded above by a linear function and which is thus, in a sense, close to the periodic case, we turn our attention to the other extreme and ask whether there exist r. n. p. sequences whose ergodic functions increase arbitrarily rapidly. We may state the problem as follows:

Given a function $R(n)$ (of integers, with integral values) such that

$$
\begin{equation*}
R(n)>n \tag{3}
\end{equation*}
$$

does there exist an r. n. p. sequence with ergodic function $f(n)$ such that for each n greater than some integer $d, f(n)>R(n)$; that is, does there exist a block of length $\leqq n$ and a block of length $>R(n)$ which does not contain it as a sub-block?

We shall see that this question is to be answered in the affirmative. Let us define a sequence as follows:

$$
a_{0}=12, \quad a_{1}=a_{0}^{-1} \underbrace{a_{0} a_{0} \cdots a_{0}}_{R(6) \text { times }}, \cdots, a_{n+1}=a_{n}^{-1} \underbrace{a_{n} a_{n} \cdots a_{n}}_{R\left[3 \cdot l\left(a_{n}\right)\right] \text { times }}
$$

where $l\left(a_{n}\right)$ denotes the number of symbols in a_{n}. The precise method we choose to number the symbols of the sequence is of course arbitrary, but we may start with the "original" .. $12 \cdots$ as in the previous case. That this sequence is r. n. p. follows by much the same reasoning as in the previous simpler case. We shall confine our attention to proving that the ergodic function increases rapidly enough. The proof will be based on the following lemma.

Lemma 2. For any $n \geqq 1$, the block $a_{n} a_{n} \cdots a_{n}$ of arbitrary length contains no sub-block of the form $a_{n}{ }^{-1}$.

Proof. It will be sufficient to show that this is true for the block $a_{n} a_{n}$. The assertion holds for $n=1$:

$$
\begin{aligned}
a_{1} & =a_{0}^{-1} \underbrace{a_{0} a_{0} \cdots a_{0}}=21 \underbrace{1212 \cdots 12,} \\
a_{1} a_{1} & =21 \underbrace{1212 \cdots 12} 21 \underbrace{1212 \cdots 12,} \\
a_{1}^{-1} & =\underbrace{21 \cdots 21} 12 .
\end{aligned}
$$

Now assume it to hold for $n=m$. By definition,

$$
\begin{aligned}
& a_{m+1} a_{m+1}=a_{m} \underbrace{1}_{R\left[3 \cdot l\left(a_{m}\right)\right]} a_{m} \cdots a_{m} a_{m}^{-1} \\
& \underbrace{a_{m} \cdots a_{m}}_{R\left[3 \cdot l\left(a_{m}\right)\right]}, \\
& a_{m+1}^{-1}=a_{\underbrace{-1}_{R[3} a_{m}^{-1} \cdots a_{m}^{-1}}^{a_{m}} a_{m},
\end{aligned}
$$

and from (2) the assertion is seen to hold for $n=m+1$, proving the lemma.

Now to prove the theorem, we choose an arbitrary integer s, where $l\left(a_{n}\right) \leqq s \leqq l\left(a_{n+1}\right),(n=1,2,3, \cdots)$, and suppose that $p \cdot l\left(a_{n}\right) \leqq s \leqq(p+1) \cdot l\left(a_{n}\right)$, where $1 \leqq p \leqq R\left[3 \cdot l\left(a_{n}\right)\right]$. We observe that

$$
\begin{aligned}
a_{n+1}= & a_{n}^{-1} \underbrace{a_{n} \cdots a_{n},}_{R\left[3 \cdot l\left(a_{n}\right)\right] \text { times }} \\
a_{n+2}= & a_{n+1}^{-1} \underbrace{a_{n+1} \cdots a_{n+1}}_{R\left[3 \cdot l\left(a_{n+1}\right)\right] \text { times }}, \\
a_{n+2}^{-1}= & \underbrace{\left[a_{n}^{-1} \cdots a_{n}^{-1} a_{n}\right]\left[a_{n}^{-1} \cdots a_{n}^{-1} a_{n}\right] \cdots\left[a_{n}^{-1} \cdots a_{n}^{-1} a_{n}\right] \cdots \cdots}_{R\left[3 \cdot l\left(a_{n+1}\right)\right] \text { blocks }} .
\end{aligned}
$$

The number of symbols in this initial portion of a_{n+2}^{-1} is equal to $R\left[3 \cdot l\left(a_{n+1}\right)\right] \cdot\left[R\left(3 \cdot l\left(a_{n}\right)\right)+1\right] \cdot l\left(a_{n}\right)$, while it contains no subblock of the form $a_{n} a_{n} a_{n}$ by Lemma 2. Thus, if $p \geqq 3$, the theorem is proved. If $p<3$, that is, $l\left(a_{n}\right) \leqq s \leqq 3 \cdot l\left(a_{n}\right)$, we simply observe that the block $a_{n} a_{n} \cdots a_{n}$ which is contained in a_{n+1} contains no sub-block of the form a_{n}^{-1} by the lemma. But its length is $>R\left[3 \cdot l\left(a_{n}\right)\right]$, which completes the proof of Theorem 2.

Theorem 2. There exist recurrent, non-periodic sequences whose ergodic functions increase arbitrarily rapidly.

Harvard University

[^0]: * Presented to the Society, September 1, 1936.
 \dagger Transactions of this Society, vol. 22 (1921), p. 94.

[^1]: * By a more detailed analysis of the sequence, a much lower bound can be found for the ergodic function $f(s)$.

