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NOTE ON A CERTAIN RING-CONGRUENCE
BY H. S. VANDIVER
1. Introduction. Consider the functions
a1 + asa + - - - + e = falow, - -, o),

where the a’s are rational integers and the o’s belong to a ring R
including the rational integers. Further, for any a; prime to m,
let

a'=1(@modm), (i=1,2,---,k).
Now we set up the function
010! %%+ agad x99+ - - -+ g a9 = (%) = ful®, 1, -, ).

Consider the operation of differentiating f,(x) with respect to
x and then multiplying the result by x. We shall call this opera-
tion E(f). Similarly we shall call E(f) the result of carrying out
this operation j times on f. Hence

(1) E@fu(%) = faria(#),
and
(2) [E(i)fn(x)]:c=1 = fn+id(a0; Ay " * ak).

Now consider any function of the form
H(x) = D yuxh,
h

where the 4’s are in R and the summation ranges over any finite
number of rational integers, k. If #; and u, are functions of this
type, then it may easily be shown by induction that

ED(uug) = (uy + ug)?,

where on the right we expand by the binomial theorem and re-
place (u1)t by u:'® with %,(® =E®(%;) and similarly for (us)?,
with (#41)°=wu;; (42)°=u.. In fact, this scheme corresponds to
setting x =e?, where ¢ is the Napierian base, and differentiating
uie, j times with respect to v, if we should assume that R con-
tains the field of all real numbers. More generally we have
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(3) ED(urng - - - us) = (wr + ug + - -+ + u,),

where, in the expression on the right, we expand by the multi-
nomial theorem and replace u;” by #;\” with %, =E®(u;); the
latter theorem is written in the form

.7‘ Ci1 C2 Cs
u1u2 ...us’

@) (mtut- - Fu)i=3 —

cilee! - ¢!

the summation ranging independently over each set of positive
or zero ¢'s satisfying

atce+ - +o=7,
and further u.'=u,.

2. The Main Theorem. Write

ki

(2) ni af
(5) fn,' (x) = OriQriX
r=1
If (b4, bs, - - -, b,) is the greatest common divisor of by, bs, « - -, by,

consider the a;f’s in (5) which have factors in common with m

and let /; be the greatest common divisor of all such. Consider
the product

©6) PG G f @) = F,
where the 8’s are integers such that
(6a) Bi+ B+ - 4+ B =0 (mod m).

We now proceed to carry out in two different ways the operation
EW(F) and finally set x=1 in each result. Employing (2) and
(3), we find

[EDE) oot = (far + far + - -+ + fa)7,

where, after expansion of the right-hand member following (3),
we set
¢ t ()
fn,' = Bfn.-+td(a1; Qgy " " ", ak,-)n
Consider a term in f,(,f.)(xﬂi) in which a,; is prime to m,

ni agifs
A giQ g%
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Set af,-=1+mq(ay,-); then the above becomes

ni Bit+Bima(ag)
O gi@ g% .
The terms in our f in which the a,:'s are prime to m may then
be written

B ni Bimg(ag)
Gi =X O gi@ g%
]

)

so that
fui () = Gi +.1C(x),
where C(x) is a function of the same type as H(x). Since
Bi+ B2+ -+ B =0 (mod ),
then
fI G;
=1

can be expressed as the sum of terms of the form 4x™7, where 4
belongs to R. Hence we may write

F =) A,xm+ LD(%),

where L=(l;, l5, - - -, l,); D(x) is of the same type as H(x), and
then

ED[Ax™] 0y = 0 (mod m7),
and also, if we write (mod L, m?) for (mod (L, m?)),
[ED(F)] 1 = 0 (mod L, m7).

THEOREM. Let R be a ring containing the ring of rational in-
tegers. Put

® b

ne
fﬂi (0[1, A2y * * ak.’) = ariar;,
r=1

where the a’s are rational integers and the o's belong to R. Further,
let

a«giE]-(mOdm); (i=1:2,"')k);

let I; be the greatest common divisor of all the ay; in the above which
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have factors in common with m; and let B1, B, + - - , Bs be rational
integers such that

B+ B2+ -+ Bs =0 (mod m).
Then

(7) (f"1 +f"z + - +fn4)1 =0 (mOd m’ ll) l27 te 7l8)’

where we expand the left-hand member, employing (4), and set

(4) .
fn.—.Bfn‘+td(Ol1, Qg " 7“’%’): (1= 17 2, ,S).

3. Applications of the Theorem. The above general theorem
has many applications, some of which will be considered here.
Kummer* gave a result which may be expressed as follows:

(8) k(h7=t — 1)1 = 0 (mod p?), (n — 1 Z j;n # 0 (mod p = 1)),

where ¢ is an odd prime; the left-hand member is expanded in
full, then 0./t is substituted for k¢, and the b’s are defined by the
recursion formula

(b+1)n=bn7 (">1)7

in which we expand the left-hand member by the binomial theo-
rem and substitute b, for b* The latter formula gives the
Bernoulli numbers.

To apply the main theorem in the present paper to Bernoulli
numbers, we employ the known formula

Si(p*) = 114204 ... 4 (p* — 1)! = p*b; (mod p**),
where 7 is even and p> 3. We also employ the formula

W05 e, (e,

P a=1 s8=1

where # is prime to p and

a
ya:—s———;(modn), (0= 9. <n).
These give
n2t — 1 pa—1
by = Z Yaa?! (mod p*),
21 a=1

* Journal fiir Mathematik, vol. 41 (1851), pp. 368-372.
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which we immediately connect up with the f-functions treated
in our theorem, and the latter gives

p—1.7
)

Byt - h:’(ﬁlhf_l + 62]1;;—1 + -+ + Boki
= 0 (mod p7, pnr 1, prel prl),
(mi£0@mod p — 1);i=1,2,---,5),

where the left-hand member is expanded in full and b,/¢ sub-
stituted for %;* in the result, (¢=1, 2, - - -, s). To obtain (8)
from (7), set s=2, and

pi—1
f"1=2yaa’n_1) fﬂz=1)51=1)ﬁ2=_17

a=1

and the result follows.
Frobenius* gave the relation

(10) Ha(l - Hb)c =0 (mOd (pa’ P“)),

where p is a prime, b is a multiple of p*~1(p—1), and the left-
hand member is expanded in full and H! is replaced by H,.
Further, H, is defined by the recursion formula

(H+ 1" = «H", (n>0),

where the left-hand member is expanded by the binomial theo-
rem and H' is replaced by H,. This gives H as the quotient of
two polynomials in x with rational integral coefficients. If these
fractions are expressed in their lowest terms, the numerators are
called Euler polynomials. Each denominator is a power of
(x—1). The relation (10) can be obtained from (7) if we take
R as the polynomial ring obtained by adjoining the indetermi-
nate x to the rational ring and extending the result given by
Frobeniust so that we have the congruence mod 7 which is
analogous to the one he gives mod p. The R,(x) referred to in
this formula is defined by

* Berliner Mathematische Gesellschaft, Sitzungsberichte, 1910, p. 826 and
p. 841.
t Loc. cit., p. 843, relation (1).
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The relation (7) gives many generalizations of (9). For example
we can take m =p¢ in lieu of m =p. Further details I hope to
give in another paper on Bernoulli numbers and Euler polyno-
mials.
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A THEOREM ON MEAN RULED SURFACES
BY MALCOLM FOSTER

Consider the ruled surface formed by the normals to a sur-
face S along some curve C on S. We ask: What are the curves
C for which the line of striction of the ruled surface is the locus
of the centers of mean curvature corresponding to C?

On S we take the lines of curvature parametric. Referred to
the moving trihedral of S, the direction-cosines of the normal
are (0, 0, 1), and the variations in these are given by*

dX = qdu, dY = — pidv, az = 0.

Now the displacement of the central point on each generator of
the ruled surface is orthogonal both to the normal and to its
neighboring position. Hence we have

oz = 0, gdudx — p1dvéy + 6z = 0,
which reduce to
(1) gdu(édu + 2qdu) — prdv(nidv — zprdv) = 0.

If in (1) we assign a value to the ratio dv/du, this equation will
determine the distance z to the line of striction on the ruled sur-
face defined by this ratio; and if to z we assign a given value,
equation (1) will determine the curves, (though not necessarily
real), for which this assigned value of z is the distance to the
lines of striction.

From (1) we have for the problem at hand,

* Eisenhart, Differential Geometry of Curves and Surfaces, pp. 166—174.



