NOTE ON A CERTAIN RING-CONGRUENCE

BY H. S. VANDIVER

1. Introduction. Consider the functions

$$
\alpha_{1} a_{1}^{n}+\alpha_{2} a_{2}^{n}+\cdots+\alpha_{k} a_{k}^{n}=f_{n}\left(\alpha_{1}, \cdots, \alpha_{k}\right)
$$

where the a 's are rational integers and the α 's belong to a ring R including the rational integers. Further, for any a_{i} prime to m, let

$$
a_{i}^{d} \equiv 1(\bmod m), \quad(i=1,2, \cdots, k)
$$

Now we set up the function
$\alpha_{1} a_{1}^{n} x^{a_{1}{ }^{d}}+\alpha_{2} a_{2}{ }^{n} x^{a_{2}}{ }^{d}+\cdots+\alpha_{k} a_{k}{ }^{n} x^{a_{k}}{ }^{d}=f_{n}(x)=f_{n}\left(x, \alpha_{1}, \cdots, \alpha_{k}\right)$.
Consider the operation of differentiating $f_{n}(x)$ with respect to x and then multiplying the result by x. We shall call this operation $E(f)$. Similarly we shall call $E^{(j)}(f)$ the result of carrying out this operation j times on f. Hence

$$
\begin{equation*}
E^{(j)} f_{n}(x)=f_{n+j d}(x) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[E^{(j)} f_{n}(x)\right]_{x=1}=f_{n+j d}\left(\alpha_{0}, \alpha_{1}, \cdots, \alpha_{k}\right) \tag{2}
\end{equation*}
$$

Now consider any function of the form

$$
H(x)=\sum_{h} \gamma_{h} x^{h}
$$

where the γ 's are in R and the summation ranges over any finite number of rational integers, h. If u_{1} and u_{2} are functions of this type, then it may easily be shown by induction that

$$
E^{(j)}\left(u_{1} u_{2}\right)=\left(u_{1}+u_{2}\right)^{i}
$$

where on the right we expand by the binomial theorem and replace $\left(u_{1}\right)^{t}$ by $u_{1}^{(t)}$ with $u_{1}{ }^{(t)}=E^{(t)}\left(u_{1}\right)$ and similarly for $\left(u_{2}\right)^{s}$, with $\left(u_{1}\right)^{0}=u_{1} ;\left(u_{2}\right)^{0}=u_{2}$. In fact, this scheme corresponds to setting $x=e^{v}$, where e is the Napierian base, and differentiating $u_{1} u_{2}, j$ times with respect to v, if we should assume that R contains the field of all real numbers. More generally we have

$$
\begin{equation*}
E^{(j)}\left(u_{1} u_{2} \cdots u_{s}\right)=\left(u_{1}+u_{2}+\cdots+u_{s}\right)^{i} \tag{3}
\end{equation*}
$$

where, in the expression on the right, we expand by the multinomial theorem and replace $u_{i}{ }^{r}$ by $u_{i}{ }^{(r)}$ with $u_{i}{ }^{(r)}=E^{(r)}\left(u_{i}\right)$; the latter theorem is written in the form

$$
\begin{equation*}
\left(u_{1}+u_{2}+\cdots+u_{s}\right)^{i}=\sum \frac{j!}{c_{1}!c_{2}!\cdots c_{s}!} u_{1}^{c_{1}} u_{2}^{c_{2}} \cdots u_{s}^{c_{s}} \tag{4}
\end{equation*}
$$

the summation ranging independently over each set of positive or zero c 's satisfying

$$
c_{1}+c_{2}+\cdots+c_{s}=j
$$

and further $u_{i}{ }^{0}=u_{i}$.
2. The Main Theorem. Write

$$
\begin{equation*}
f_{n_{i}}^{(i)}(x)=\sum_{r=1}^{k_{i}} \alpha_{r i} a_{r i}^{n_{i}} x^{\alpha_{r i}^{d}} . \tag{5}
\end{equation*}
$$

If $\left(b_{1}, b_{2}, \cdots, b_{v}\right)$ is the greatest common divisor of $b_{1}, b_{2}, \cdots, b_{v}$, consider the $a_{r i}^{n}$'s in (5) which have factors in common with m and let l_{i} be the greatest common divisor of all such. Consider the product

$$
\begin{equation*}
f_{n_{1}}^{(1)}\left(x^{\beta_{1}}\right) f_{n_{2}}^{(2)}\left(x^{\beta_{2}}\right) \cdots f_{n_{s}}^{(s)}\left(x^{\beta_{s}}\right)=F, \tag{6}
\end{equation*}
$$

where the β 's are integers such that

$$
\begin{equation*}
\beta_{1}+\beta_{2}+\cdots+\beta_{s} \equiv 0(\bmod m) \tag{6a}
\end{equation*}
$$

We now proceed to carry out in two different ways the operation $E^{(j)}(F)$ and finally set $x=1$ in each result. Employing (2) and (3), we find

$$
\left[E^{(j)}(F)\right]_{x=1}=\left(f_{n_{1}}+f_{n_{2}}+\cdots+f_{n_{s}}\right)^{j}
$$

where, after expansion of the right-hand member following (3), we set

$$
f_{n_{i}}^{t}=\beta_{f_{n_{i}+t d}^{t}}^{(i)}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k_{i}}\right) .
$$

Consider a term in $f_{n_{i}}^{(i)}\left(x^{\beta_{i}}\right)$ in which $a_{g i}$ is prime to m,

$$
\alpha_{g i} a_{g i}^{n_{i}} x^{a_{g i i}^{d} \beta_{i}} .
$$

Set $a_{g i}^{d}=1+m q\left(a_{g i}\right)$; then the above becomes

$$
\alpha_{g i} a_{g i}^{n_{i}} x^{\beta_{i}+\beta_{i} m q\left(a_{g i}\right)} .
$$

The terms in our f in which the $a_{g i}$'s are prime to m may then be written

$$
G_{i} \equiv x^{\beta_{i}} \sum_{g} \alpha_{g i} a_{g i}^{n_{i}} x^{\beta_{i} m q\left(a_{g i}\right)},
$$

so that

$$
f_{n_{i}}^{(i)}\left(x^{\beta_{i}}\right)=G_{i}+. l_{i} C(x),
$$

where $C(x)$ is a function of the same type as $H(x)$. Since

$$
\beta_{1}+\beta_{2}+\cdots+\beta_{s} \equiv 0(\bmod l)
$$

then

$$
\prod_{i=1}^{\prime} G_{i}
$$

can be expressed as the sum of terms of the form $A x^{m \gamma}$, where A belongs to R. Hence we may write

$$
F \equiv \sum A_{\gamma} x^{m}+L D(x)
$$

where $L=\left(l_{1}, l_{2}, \cdots, l_{s}\right) ; D(x)$ is of the same type as $H(x)$, and then

$$
E^{(j)}\left[A x^{m \gamma}\right]_{x=1} \equiv 0\left(\bmod m^{j}\right),
$$

and also, if we write $\left(\bmod L, m^{i}\right)$ for $\left(\bmod \left(L, m^{i}\right)\right)$,

$$
\left[E^{(j)}(F)\right]_{x=1} \equiv 0\left(\bmod L, m^{j}\right)
$$

Theorem. Let R be a ring containing the ring of rational integers. Put

$$
f_{n_{i}}^{(i)}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k_{i}}\right)=\sum_{r=1}^{k_{i}} \alpha_{r i} a_{r i}^{n_{i}}
$$

where the a 's are rational integers and the α 's belong to R. Further, let

$$
a_{r i}^{d} \equiv 1(\bmod m), \quad(i=1,2, \cdots, k)
$$

let l_{i} be the greatest common divisor of all the $a_{r i}^{n}$ in the above which
have factors in common with m; and let $\beta_{1}, \beta_{2}, \cdots, \beta_{s}$ be rational integers such that

$$
\beta_{1}+\beta_{2}+\cdots+\beta_{s} \equiv 0(\bmod m)
$$

Then

$$
\begin{equation*}
\left(f_{n_{1}}+f_{n_{2}}+\cdots+f_{n_{s}}\right)^{j} \equiv 0\left(\bmod m^{j}, l_{1}, l_{2}, \cdots, l_{s}\right) \tag{7}
\end{equation*}
$$

where we expand the left-hand member, employing (4), and set

$$
f_{n_{i}}^{t}=\beta^{t} f_{n_{i}+t d}^{(i)}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k_{i}}\right), \quad(i=1,2, \cdots, s) .
$$

3. Applications of the Theorem. The above general theorem has many applications, some of which will be considered here. Kummer* gave a result which may be expressed as follows:
(8) $h^{n}\left(h^{p-1}-1\right)^{j} \equiv 0\left(\bmod p^{j}\right),(n-1 \geqq j ; n \neq 0(\bmod \overline{p-1}))$,
where p is an odd prime; the left-hand member is expanded in full, then b_{t} / t is substituted for h^{t}, and the b 's are defined by the recursion formula

$$
(b+1)^{n}=b_{n}, \quad(n>1)
$$

in which we expand the left-hand member by the binomial theorem and substitute b_{k} for b^{k}. The latter formula gives the Bernoulli numbers.

To apply the main theorem in the present paper to Bernoulli numbers, we employ the known formula

$$
S_{i}\left(p^{k}\right)=1^{i}+2^{i}+\cdots+\left(p^{k}-1\right)^{i} \equiv p^{k} b_{i}\left(\bmod p^{2 k}\right)
$$

where i is even and $p>3$. We also employ the formula

$$
\frac{\left(n^{i}-1\right) S_{i}\left(p^{\alpha}\right)}{p^{\alpha}}=\sum_{a=1}^{p \alpha-1} \sum_{s=1}^{i} a^{i} C_{s, i}\left(\frac{v_{a}}{a}\right)^{s} p^{\alpha(s-1)},
$$

where n is prime to p and

$$
y_{a} \equiv-\frac{a}{p}(\bmod n), \quad\left(0 \leqq y_{a}<n\right)
$$

These give

$$
\frac{n^{2 i}-1}{2 i} b_{2 i} \equiv \sum_{a=1}^{p^{\alpha-1}} y_{a} a^{2 i-1}\left(\bmod p^{\alpha}\right)
$$

* Journal für Mathematik, vol. 41 (1851), pp. 368-372.
which we immediately connect up with the f-functions treated in our theorem, and the latter gives

$$
\begin{aligned}
& h_{1}^{n_{1}} h_{2}^{n_{2}} \cdots h_{s}^{n_{s}}\left(\beta_{1} h_{1}^{p-1}+\beta_{2} h_{2}^{p-1}+\cdots+\beta_{s} h_{s}^{p-1}\right)^{j} \\
& \equiv 0\left(\bmod p^{j}, p^{n_{1}-1}, p^{n_{2}-1}, \cdots, p^{n_{s}-1}\right) \text {, } \\
& \left(n_{i} \neq 0(\bmod \overline{p-1}) ; i=1,2, \cdots, s\right),
\end{aligned}
$$

where the left-hand member is expanded in full and b_{t} / t substituted for $h_{i}{ }^{t}$ in the result, ($i=1,2, \cdots, s$). To obtain (8) from (7), set $s=2$, and

$$
f_{n_{1}}=\sum_{a=1}^{p i-1} y_{a} a^{n-1}, \quad f_{n_{2}}=1, \beta_{1}=1, \beta_{2}=-1
$$

and the result follows.
Frobenius* gave the relation

$$
\begin{equation*}
H^{a}\left(1-H^{b}\right)^{c} \equiv 0\left(\bmod \left(p^{a}, p^{e c}\right)\right) \tag{10}
\end{equation*}
$$

where p is a prime, b is a multiple of $p^{e-1}(p-1)$, and the lefthand member is expanded in full and H^{t} is replaced by H_{t}. Further, H_{t} is defined by the recursion formula

$$
(H+1)^{n}=x H^{n}, \quad(n>0)
$$

where the left-hand member is expanded by the binomial theorem and H^{t} is replaced by H_{t}. This gives H as the quotient of two polynomials in x with rational integral coefficients. If these fractions are expressed in their lowest terms, the numerators are called Euler polynomials. Each denominator is a power of $(x-1)$. The relation (10) can be obtained from (7) if we take R as the polynomial ring obtained by adjoining the indeterminate x to the rational ring and extending the result given by Frobenius \dagger so that we have the congruence mod p^{i} which is analogous to the one he gives $\bmod p$. The $R_{n}(x)$ referred to in this formula is defined by

[^0]$$
H^{n}(x)=\frac{R_{n}(x)}{(x-1)^{n}}
$$

The relation (7) gives many generalizations of (9). For example we can take $m=p^{e}$ in lieu of $m=p$. Further details I hope to give in another paper on Bernoulli numbers and Euler polynomials.

University of Texas

A THEOREM ON MEAN RULED SURFACES

BY MALCOLM FOSTER
Consider the ruled surface formed by the normals to a surface S along some curve C on S. We ask: What are the curves C for which the line of striction of the ruled surface is the locus of the centers of mean curvature corresponding to C ?

On S we take the lines of curvature parametric. Referred to the moving trihedral of S, the direction-cosines of the normal are ($0,0,1$), and the variations in these are given by*

$$
d X=q d u, \quad d Y=-p_{1} d v, \quad d Z=0
$$

Now the displacement of the central point on each generator of the ruled surface is orthogonal both to the normal and to its neighboring position. Hence we have

$$
\delta z=0, \quad q d u \delta x-p_{1} d v \delta y+\delta z=0
$$

which reduce to

$$
\begin{equation*}
q d u(\xi d u+z q d u)-p_{1} d v\left(\eta_{1} d v-z p_{1} d v\right)=0 \tag{1}
\end{equation*}
$$

If in (1) we assign a value to the ratio $d v / d u$, this equation will determine the distance z to the line of striction on the ruled surface defined by this ratio; and if to z we assign a given value, equation (1) will determine the curves, (though not necessarily real), for which this assigned value of z is the distance to the lines of striction.

From (1) we have for the problem at hand,

[^1]
[^0]: * Berliner Mathematische Gesellschaft, Sitzungsberichte, 1910, p. 826 and p. 841 .
 \dagger Loc. cit., p. 843, relation (1).

[^1]: * Eisenhart, Differential Geometry of Curves and Surfaces, pp. 166-174.

