ON A THEOREM OF HIGHER RECIPROCITY*

By albert whiteman \dagger

1. Introduction. Let \mathfrak{D} denote the totality of polynomials in an indeterminate x, with coefficients in a fixed Galois field $G F\left(p^{\pi}\right)$ of order p^{π}. Let P be a primary irreducible polynomial in \mathfrak{D}; then, if A is any polynomial in \mathfrak{D} not divisible by P, we define $\{A \mid P\}$ as that element in $G F\left(p^{\pi}\right)$ for which

$$
\left\{\frac{A}{p}\right\} \equiv A^{\left(p^{\pi \nu}-1\right) /\left(p^{\pi-1}\right)} \quad(\bmod P)
$$

where ν is the degree of P.
We have then the following theorem of reciprocity due to H . Kuhne \ddagger and rediscovered by Schmidt§ and Carlitz.\|

If P and Q are primary irreducible polynomials in \mathfrak{D} of degree ν and ρ respectively, then

$$
\left\{\frac{P}{Q}\right\}=(-1)^{\rho \nu}\left\{\frac{Q}{P}\right\}
$$

If $M=P_{1}{ }^{a_{1}} \cdots P_{k}{ }^{a_{k}}$ and $(A, M)=1$ we use the definition,

$$
\left\{\frac{A}{M}\right\}=\left\{\frac{A}{P_{1}}\right\}^{a_{1}} \cdots\left\{\frac{A}{P_{k}}\right\}^{a_{k}}
$$

The purpose of this note is to give a simple new proof of the following theorem:

[^0]If M and N are primary relatively prime polynomials in \mathfrak{D} of degree m and n respectively, then

$$
\left\{\frac{M}{N}\right\}=(-1)^{m n}\left\{\frac{N}{M}\right\}
$$

This generalized form of Kuhne's theorem is, of course, not new. The novelty of our method consists in proving the case M, N directly (rather than P, Q) by making use of the generalized analog of Gauss's lemma* proved in §2.
2. Generalization of the Analog of Gauss's Lemma. We shall employ the following notation. If

$$
F=a_{0} x^{\nu}+a_{1} x^{\nu-1}+\cdots+a_{\nu}, \quad a_{0} \neq 0
$$

is a polynomial in \mathfrak{D}, then

$$
\operatorname{sgn} F=a_{0}, \quad \operatorname{deg} F=\nu ;
$$

for $\operatorname{sgn} F=1, F$ is said to be primary. Let $R(A / B)$ denote the remainder in the division of A by B. Then the generalization in question is furnished by the following lemma.

Lemma. Let A and M be in \mathfrak{D}, M primary and relatively prime to A; then

$$
\left\{\frac{A}{M}\right\}=\prod_{\operatorname{deg} H<m} \operatorname{sgn} R\left(\frac{H A}{M}\right)
$$

the product extending over all primary H of degree less than the degree of M.

We shall now give a proof of this lemma along lines suggested by Schering's \dagger proof in the numerical case.
3. Proof of the Lemma. Following Dedekind, \ddagger we define $\phi(M)$ to be the number of polynomials in a reduced residue system, $\bmod M$; the number of primary polynomials prime to M

[^1]and of degree less than m is then evidently $\phi(M) /\left(p^{\pi}-1\right)$. Hence, just as in the numerical case, it is very easy to show that the number of primary polynomials H of degree less than m such that $(H, M)=D$ is $\phi(M / D) /\left(p^{\pi}-1\right)$.

Put $H=H_{1} D, M=M_{1} D$. Then the congruence

$$
H A \equiv H^{\prime} \operatorname{sgn} R\left(\frac{H A}{M}\right) \quad(\bmod M), \quad \operatorname{deg} H^{\prime}<m, \quad \operatorname{sgn} H^{\prime}=1
$$

becomes

$$
\begin{equation*}
H_{1} A \equiv H_{1}^{\prime} \operatorname{sgn} R\left(\frac{H A}{M}\right) \quad\left(\bmod M_{1}\right) \tag{1}
\end{equation*}
$$

Evidently the polynomials H_{1} are the polynomials H_{1}^{\prime} in some order. Therefore, if we multiply all congruences of the type (1) together and divide each member of the resulting congruence by the product of the H_{1} (which is prime to M_{1}), we have

$$
\begin{equation*}
A^{\phi\left(M_{1}\right) /\left(p^{\pi}-1\right)} \equiv \prod_{(H, M)=D} \operatorname{sgn} R\left(\frac{H A}{M}\right) \quad\left(\bmod M_{1}\right) \tag{2}
\end{equation*}
$$

For $M_{1}=P$, a primary irreducible polynomial of degree ν, the last congruence becomes

$$
\begin{equation*}
A^{\left(p^{\pi \nu}-1\right) /\left(p^{\pi}-1\right)} \equiv\left\{\frac{A}{P}\right\} \quad(\bmod P) \tag{3}
\end{equation*}
$$

Writing this congruence in the form

$$
A^{\left(p^{\pi \nu}-1\right) /\left(p^{\pi}-1\right)}=\left\{\frac{A}{P}\right\}+F P
$$

and raising both members to the $p^{\pi(k-1) \nu}$ th power, we can readily show that

$$
A^{p^{\pi(k-1) \nu}\left(p^{\pi \nu}-1\right) /\left(p^{\pi-1)}\right.}=\left\{\frac{A}{P}\right\}+F^{\prime} P^{p^{\pi(k-1) \nu}}
$$

But it is well known that

$$
\phi\left(P^{k}\right)=p^{\pi(k-1) \nu}\left(p^{\pi \nu}-1\right) .
$$

Hence

$$
\begin{equation*}
A^{\phi\left(P^{k}\right) /\left(p^{\pi}-1\right)} \equiv\left\{\frac{A}{P}\right\} \quad\left(\bmod P^{k}\right) \tag{4}
\end{equation*}
$$

Finally, for $M_{1}=P_{1}{ }^{b_{1}} \cdots P_{k}{ }^{b_{k}}, 0 \leqq b_{i} \leqq a_{i}, k>1$, $\operatorname{deg} P_{i}=\nu_{i}$, we have

$$
\frac{\phi\left(M_{1}\right)}{p^{\pi}-1}=\frac{1}{p^{\pi}-1} \prod_{i=1}^{k} p^{\left(b_{i}-1\right) \pi \nu_{i}}\left(p^{\pi \nu_{i}}-1\right) .
$$

Hence, since

$$
A^{p \pi \nu_{i}} \equiv 1\left(\bmod P_{i}\right)
$$

it follows that

$$
\begin{equation*}
A^{\phi\left(M_{1}\right) /(p \pi-1)} \equiv 1\left(\bmod M_{1}\right) \tag{5}
\end{equation*}
$$

where, as already stated, M_{1} is the product of at least two distinct irreducible polynomials.

Combining the results of (2), $\cdots,(5)$ we now see that

$$
\begin{equation*}
\prod_{(H, M)=D} \operatorname{sgn} R\left(\frac{H A}{M}\right) \tag{6}
\end{equation*}
$$

has the value 1 unless $M_{1}=M / D$ is irreducible or the power of an irreducible polynomial. On the other hand, for $M_{1}=P_{i}{ }^{b}$ $\left(b=1, \cdots, a_{i}\right),(6)$ has the value $\left\{A \mid P_{i}\right\}$. Consequently

$$
\begin{aligned}
\prod_{D \mid M} \prod_{(H, M)=D} \operatorname{sgn} R\left(\frac{H A}{M}\right) & =\prod_{\operatorname{deg} H<m} \operatorname{sgn} R\left(\frac{H A}{M}\right) \\
& =\left\{\frac{A}{P_{1}}\right\}^{a_{1}} \cdots\left\{\frac{A}{P_{k}}\right\}^{a_{k}}
\end{aligned}
$$

from which the Lemma follows at once.
4. Proof of the Theorem. Let A, N denote primary polynomials of degrees a, n respectively; let $(A, N)=1, a \geqq n$. Consider the congruence

$$
A \equiv \mathcal{R}(A / N) \quad(\bmod N), \quad \operatorname{deg} \mathcal{R}(A / N)<n
$$

Evidently there exists a primary H (say H_{0}) of degree $a-n$ such that

$$
A=R(A / N)+H_{0} N
$$

But this equation may be written in the form

$$
\begin{equation*}
H_{0} N \equiv-\mathbb{R}(A / N) \quad(\bmod A) \tag{7}
\end{equation*}
$$

Let E be any polynomial (not necessarily primary) of degree less than $a-n$. Then we may write
(8) $\quad\left(H_{0}+E\right) N \equiv E N-\mathcal{R}(A / N)(\bmod A)$,
where

$$
\begin{equation*}
0<\operatorname{deg}(E N-\mathbb{R}(A / N))<a \tag{9}
\end{equation*}
$$

$$
\operatorname{sgn}(E N-\mathbb{R}(A / N))=\operatorname{sgn} E N=\operatorname{sgn} E .
$$

Furthermore, we have the obvious identity

$$
\begin{equation*}
\prod_{\operatorname{deg} H=a-n} H N=H_{0} N \prod_{\operatorname{deg} E<a-n}\left(H_{0}+E\right) N, \quad E \neq 0 . \tag{10}
\end{equation*}
$$

Therefore, by equations (7), \cdot, (10),

$$
\begin{align*}
& \prod_{\operatorname{deg} H=a-n} \operatorname{sgn} R\left(\frac{H N}{A}\right) \\
&= \operatorname{sgn} R\left(\frac{H_{0} N}{A}\right) \prod_{\operatorname{deg} E<a-n} \operatorname{sgn} R\left(\frac{\left(H_{0}+E\right) N}{A}\right) \tag{11}\\
&=-\operatorname{sgn} R\left(\frac{A}{N}\right) \prod_{\operatorname{deg} E<a-n} \operatorname{sgn} E .
\end{align*}
$$

Now, by the generalization of Wilson's theorem for a Galois field,

$$
\prod_{b} b=-1, \quad b \text { in } G F\left(p^{\pi}\right)
$$

from which it follows at once that

$$
\prod_{\operatorname{deg} E<a-n} \operatorname{sgn} E=(-1)^{a-n} .
$$

Hence (11) becomes

$$
\begin{equation*}
\prod_{\operatorname{deg} H=a-n} \operatorname{sgn} R\left(\frac{H N}{A}\right)=(-1)^{a-n+1} \operatorname{sgn} R\left(\frac{A}{N}\right) \tag{12}
\end{equation*}
$$

Since

$$
R\left(\frac{H N}{A}\right)=-R\left(\frac{A}{H N}\right), \operatorname{deg} H N=\operatorname{deg} A
$$

(12) may also be written in the form

$$
\begin{equation*}
\prod_{\operatorname{deg} H=a-n} \operatorname{sgn} R\left(\frac{A}{H N}\right)=(-1)^{a-n} \operatorname{sgn} R\left(\frac{A}{N}\right) \tag{13}
\end{equation*}
$$

Let us now assume, as we may without any loss of generality, that $m \geqq n$. In (12) replace A by $K M$, where K is any primary polynomial of degree $k(k<n)$. Then we have

$$
\prod_{\operatorname{deg} H=k+m-n} \operatorname{sgn} R\left(\frac{H N}{K M}\right)=(-1)^{k+m-n+1} \operatorname{sgn} R\left(\frac{K M}{N}\right)
$$

Now let K run through all the $p^{\pi k}$ primary polynomials of degree k; we get

$$
\begin{equation*}
\prod_{\substack{\operatorname{deg} H=k+m-n \\ \operatorname{deg} K=k}} \operatorname{sgn} R\left(\frac{H N}{K M}\right)=(-1)^{k+m-n+1} \prod_{\operatorname{deg} K=k} \operatorname{sgn} R\left(\frac{K M}{N}\right) . \tag{14}
\end{equation*}
$$

In a similar manner we may obtain from (13),
(15) $\prod_{\substack{\operatorname{deg} H=k+m-n \\ \operatorname{deg} K=k}} \operatorname{sgn} R\left(\frac{H N}{K M}\right)=(-1)^{k} \prod_{\operatorname{deg} H=k+m-n} \operatorname{sgn} R\left(\frac{H N}{M}\right)$.

Comparing (14) and (15), we obtain

$$
\prod_{\operatorname{deg} K=k} \operatorname{sgn} R\left(\frac{K M}{N}\right)=(-1)^{m+n-1} \prod_{\operatorname{deg} H=k+m-n} \operatorname{sgn} R\left(\frac{H N}{M}\right)
$$

Therefore

$$
\prod_{\operatorname{deg} K<n} \operatorname{sgn} \mathcal{R}\left(\frac{K M}{N}\right)=(-1)^{m n+n^{2}-n} \prod_{m-n \leqq \operatorname{deg} H<m} \operatorname{sgn} \mathcal{R}\left(\frac{H N}{M}\right)
$$

When we note that

$$
\prod_{\operatorname{deg} H<m-n} \operatorname{sgn} R\left(\frac{H N}{M}\right)=1
$$

the theorem follows at once.
University of Pennsylvania

[^0]: * Presented to the Society, February 20, 1937.
 \dagger Harrison Scholar in Mathematics, University of Pennsylvania.
 \ddagger H. Kuhne, Eine Wechselbeziehung zwischen Funktionen mehrerer Unbestimmter die zu Reziprozitätsgesetzen filhrt, Journal für die reine und angewandte Mathematik, vol. 124 (1901-02), pp. 121-133.
 § F. K. Schmidt, Zur Zahlenthearie in Körpern von der Charakteristik p, Sitzungsberichte der Physikalish-medizinischen Societät zu Erlangen, vol. 58-59 (1928), pp. 159-172.
 || L. Carlitz, The arithmetic of polynomials in a Galois field, American Journal of Mathematics, vol. 54 (1932), pp. 39-50.

[^1]: * L. Carlitz, loc. cit., p. 46.
 \dagger E. Schering, Zur Theorie der quadratischen Reste, Acta Mathematica, vol. 1 (1882), pp. 153-170; see also P. Bachmann, Die Elemente der Zahlentheorie, 1892, pp. 144-148.
 \ddagger R. Dedekind, Abriss einer Theorie der höheren Congruenzen in Bezug auf einer reellen Primzahl-Modulus, Journal für die reine und angewandte Mathematik, vol. 54 (1857), pp. 1-26.

