SOME SYMBOLIC IDENTITIES*

BY L. I. NEIKIRK
Differential equations were first solved by symbolic methods in England and on the continent in the first half of the last century. The differentiation symbol was treated as a symbol of quantity with restrictions. Then followed symbolic treatment of invariants and covariants, Cayley's hyperdeterminant, and Aronhold's symbolic notations. These were followed by Blissard's umbral notation in the theory of numbers.

This paper is devoted to showing that these are all reducible to symbolic differentiation.

If we represent differentiation by the symbol D and separate the symbols of operation from the symbols of quantity, then any analytic identity, such as $\Phi_{1}(y)=\Phi_{2}(y)$, will give an operational identity, $\Phi_{1}(D)=\Phi_{2}(D)$.

If this operational identity is applied to a second identity

$$
F_{1}(x)=F_{2}(x)
$$

the result will be a new identity. Most identities obtained in this way are easily obtained otherwise. The following are some examples.

Invariants and covariants. If $D_{1}=\partial / \partial x_{1}$ and $D_{2}=\partial / \partial x_{2}$, then

$$
D_{2}^{r} D_{1}^{n-r}\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right)^{n}=n!\alpha_{1}^{n-r} \alpha_{2}^{r},
$$

where $\alpha_{x}{ }^{n}$ is a special form of degree n, while the operation on the general form gives

$$
D_{2}^{r} D_{1}^{n-r} f\left(x_{1}, x_{2}\right)=D_{2}^{r} D_{1}^{n-r}\left(a_{0} x_{1}^{n}+n a_{1} x_{1}^{n-1} x_{2}+\cdots\right)=n!a_{r} .
$$

We now transform our coordinates:

$$
x_{1}=\xi_{1} X_{1}+\eta_{1} X_{2}, \quad x_{2}=\xi_{2} X_{1}+\eta_{2} X_{2}
$$

or

$$
X_{1}=\frac{1}{\Delta}\left(\eta_{2} x_{1}-\eta_{1} x_{2}\right), \quad X_{2}=\frac{1}{\Delta}\left(-\xi_{2} x_{1}+\xi_{1} x_{2}\right),
$$

[^0]where
\[

\Delta=\left|$$
\begin{array}{cc}
\xi_{1} & \eta_{1} \\
\xi_{2} & \eta_{2}
\end{array}
$$\right| \neq 0
\]

Then if $\partial / \partial X_{1}=\bar{D}_{1}$ and $\partial / \partial X_{2}=\bar{D}_{2}$, we write

$$
\frac{\partial f}{\partial x_{1}}=\frac{\partial f}{\partial X_{1}} \cdot \frac{\partial X_{1}}{\partial x_{1}}+\frac{\partial f}{\partial X_{2}} \frac{\partial X_{2}}{\partial x_{1}}
$$

in symbolic form

$$
D_{1} f=\frac{1}{\Delta}\left(\bar{D}_{1} \eta_{2}-\bar{D}_{2} \xi_{2}\right) f
$$

also

$$
D_{2} f=\frac{1}{\Delta}\left(-\bar{D}_{1} \eta_{1}+\bar{D}_{2} \xi_{2}\right) f
$$

and if $D^{\prime}=\partial / \partial y$ we have

$$
\begin{aligned}
\left(D D^{\prime}\right)= & \left(D_{1} D_{2}^{\prime}-D_{2} D_{1}^{\prime}\right) \\
= & \frac{1}{\Delta^{2}}\left[\left(\bar{D}_{1} \eta_{2}-\bar{D}_{2} \xi_{2}\right)\left(-\bar{D}_{1}^{\prime} \eta_{1}+\bar{D}_{2}^{\prime} \xi_{1}\right)\right. \\
& \left.-\left(-\bar{D}_{1} \eta_{1}+\bar{D}_{2} \xi_{1}\right)\left(\bar{D}_{1}^{\prime} \eta_{2}-\bar{D}_{2}^{\prime} \xi_{2}\right)\right] \\
= & \frac{1}{\Delta^{2}}\left|\begin{array}{rr}
\eta_{2} & -\xi_{2} \\
-\eta_{1} & \xi_{1}
\end{array}\right|\left|\begin{array}{cc}
\bar{D}_{1} & \bar{D}_{1}^{\prime} \\
\bar{D}_{2} & \bar{D}_{2}^{\prime}
\end{array}\right|=\frac{1}{\Delta}\left|\begin{array}{cc}
\bar{D}_{1} & \bar{D}_{1}^{\prime} \\
\bar{D}_{2} & \bar{D}_{2}^{\prime}
\end{array}\right| .
\end{aligned}
$$

For example

$$
f(x)_{a}=a_{0} x_{1}^{4}+4 a_{1} x_{1}^{3} x_{2}+6 a_{2} x_{1}{ }^{2} x_{2}{ }^{2}+4 a_{3} x_{1} x_{2}^{3}+a_{4} x_{2}^{4}
$$

gives

$$
\left.\frac{1}{2}\left|\begin{array}{ll}
D_{1} & D_{1}^{\prime} \\
D_{2} & D_{2}^{\prime}
\end{array}\right|^{4} f(x)_{a} f(y)_{b}\right]_{y=x}^{b=a}=(4!)^{2}\left(a_{0} a_{4}-4 a_{1} a_{3}+3 a_{2}^{2}\right)
$$

while

$$
\left.\frac{1}{2}\left|\begin{array}{ll}
\bar{D}_{1} & \bar{D}_{1}^{\prime} \\
\bar{D}_{2} & \bar{D}_{2}^{\prime}
\end{array}\right|^{4} F(X)_{A} F(Y)_{B}\right]_{Y=X}^{B=A}=(4!)^{2}\left(A_{0} A_{4}-4 A_{1} A_{3}+3 A_{2}^{2}\right)
$$

Therefore

$$
A_{0} A_{4}-4 A_{1} A_{3}+3 A_{2}^{2}=\Delta^{4}\left(a_{0} a_{4}-4 a_{1} a_{3}+3 a_{2}^{2}\right)
$$

This is Cayley's hyperdeterminant notation. This would be, in the Aronhold symbolic notation,

$$
\left.\frac{1}{2}\left|\begin{array}{ll}
D_{1} & D_{1}^{\prime} \\
\Delta_{2} & \Delta_{2}^{\prime}
\end{array}\right|^{4} \alpha_{x}{ }^{4} \beta_{y}{ }^{4}\right]_{y=x}=\frac{1}{2}(4!)^{2}(\alpha \beta)^{4}
$$

Blissard's umbral notation. Let $D=d / d y$. Then the symbolic form of MacLaurin's theorem is

$$
\left.\left.F(x)=F(y)]_{y=0}+D F(y)\right]_{y=0} x+\frac{D^{2}}{1.2} F(y)\right]_{y=0} x^{2}+\cdots,
$$

or

$$
\left.F(x)=\left(1+x D+\frac{x^{2} D^{2}}{z!}+\cdots\right) F(y)\right]_{y=0}
$$

Now if

$$
F(y)=1+B_{1} y+\frac{B_{2} y^{2}}{2!}+\frac{B_{3} y^{3}}{3!}+\cdots,\left(e^{B y}\right)
$$

then

$$
\left.\left.F(y)]_{y=0}=1 ; D F(y)\right]_{y=0}=B_{1} ; D^{2} F(y)\right]_{y=0}=B_{2} ; \cdots ;
$$

and

$$
\begin{aligned}
\left(1_{1}+n B_{1}+\frac{n(n-1)}{1 \cdot 2} B_{2}+\cdots+n B_{n-1}\right. & \left.+B_{n}\right)-B_{n} \\
& =\left[(1+B)^{n}-B^{n}\right]=0
\end{aligned}
$$

becomes

$$
\begin{aligned}
\left\{\left[\left(1+n D+\frac{n(n-1)}{2!} D^{2}\right.\right.\right. & +\cdots \\
& \left.\left.\left.+n D^{n-1}+D^{n}\right)-D^{n}\right] F(y)\right\}_{y=0} \\
& =\left\{\left[(1+D)^{n}-D^{n}\right] F(y)\right\}_{y=0}=0
\end{aligned}
$$

and one of the principal identities used in Blissard's theory becomes

$$
\{[f(x+(D-1) \theta)-f(x-\theta D)] F(y)\}_{y=0}=\theta \frac{d f(x)}{d x}
$$

Blissard's remark, "An equation which has a representative quantity is not susceptible to any algebraic operation by which the indices would be affected," becomes

$$
(D f)^{2} \neq D^{2} f
$$

University of Washington

ON FOURTH ORDER SELF-ADJOINT
 DIFFERENCE SYSTEMS*

BY V. V. LATSHAW

A linear difference expression for which the differential transform is self-adjoint (anti-self-adjoint) we shall call self-adjoint (anti-self-adjoint). \dagger We choose two fourth order difference equations

$$
\begin{align*}
L^{+}(u) & \equiv p(x)[u(x+2)+u(x-2)] \\
& +\lambda[u(x+1)+u(x-1)]+R(x) u(x)=0 \tag{1}\\
L^{-}(u) & \equiv p(x)[u(x+2)-u(x-2)] \\
& +\lambda[u(x+1)-u(x-1)]=0
\end{align*}
$$

where $L^{+}(u)$ is self-adjoint and $L^{-}(u)$ anti-self-adjoint for the range ($x=a, a+1, \cdots, b-1 ; b-a \geqq 4) . R(x)$ and $p(x)$ are both real, $p(x)$ being a non-vanishing periodic function of period two; λ is a parameter.

Let the functions ($y_{1}, y_{2}, y_{3}, y_{4}$) constitute a fundamental set of solutions for either (1) or (2), and ($w_{1}, w_{2}, w_{3}, w_{4}$) the set adjoint to it. The two sets are related by the equations

[^1]
[^0]: * Presented to the Society, June 18, 1936.

[^1]: * Presented to the Society, October 30, 1937.
 \dagger J. Kaucky, Sur les équations aux différences finies qui sont identiques à leurs adjointes, Publications of the Faculty of Sciences, University of Masaryk, No. 22 (1922). For a discussion of adjoint differential expressions of infinite order, see H. T. Davis, The Theory of Linear Operators, 1936, pp. 474-475.

