$$
\begin{equation*}
\frac{\partial P_{i}}{\partial \sigma}=A_{i} \tag{14}
\end{equation*}
$$

This system, together with the initial conditions, is satisfied by $P_{i}=0,(i=1, \cdots, k)$. Hence, on account of the uniqueness of the solution of (14) with given initial values, we conclude that $P_{i} \equiv 0$, and the proof is complete.

New York University

ON THE EXISTENCE OF LINEAR FUNCTIONALS

 D EFINED OVER LINEAR SPACES*BY R. P. AGNEW

1. Introduction. A function $q(x)$ with domain in a linear space E and range in the set R of real numbers is called a functional, and $q(x)$ is called linear, if

$$
\begin{equation*}
q(a x+b y)=a q(x)+b q(y), \quad x, y \varepsilon E ; a, b \varepsilon R \tag{1}
\end{equation*}
$$

We call a functional $r(x)$ an r-function (over E) if there exists a linear functional $f(x)$ with

$$
\begin{equation*}
f(x) \leqq r(x), \quad x \varepsilon E \tag{2}
\end{equation*}
$$

Using a notation of Banach \dagger we call a functional $p(x)$ a p-function if

$$
\begin{array}{rlr}
p(t x) & =t p(x), & t \geqq 0, x \varepsilon E \\
p(x+y) & \leqq p(x)+p(y), & x, y \varepsilon E
\end{array}
$$

A fundamental theorem of Banach (loc. cit., p. 29) can be stated as follows:

Theorem (Banach). Each p-function is an r-function.
In some problems \ddagger involving existence of linear functionals $f_{1}(x)$ having prescribed properties, there appears a functional $q(x)$ with the following significance: There exists a linear functional f_{1} having the requisite properties if and only if there exists

[^0]a linear functional f with $f(x) \leqq q(x)$, that is, if and only if $q(x)$ is an r-function. If $q(x)$ can be shown to be a p-function, the problem is solved by Banach's theorem; if $q(x)$ is not a p-function or one is unable to decide whether $q(x)$ is a p-function, Banach's theorem cannot be applied. These considerations, and the fact that it is easy to give examples of r-functions which are not q-functions, lead one to desire an analytic characterization of r-functions. In $\S 2$ we give such a characterization, and in §3 we give some closely related theorems.
2. Characterization of r-functions. We prove now the theorem:

Theorem 1. In order that a functional $r(x)$ defined over E may be an r-function, it is necessary and sufficient that

$$
\begin{equation*}
\underset{n, t_{k}>0 ; \Sigma x_{k}=0}{\text { g.1.b. }} \sum_{k=1}^{n} \frac{r\left(t_{k} x_{k}\right)}{t_{k}} \geqq 0 . \tag{5}
\end{equation*}
$$

In (5), $\sum x_{k}$ stands for the sum $x_{1}+\cdots+x_{n}$ of elements $x_{k} \varepsilon E$. To prove necessity, let $r(x)$ be an r-function and let $f(x)$ be a linear functional with $f(x) \leqq r(x)$ for all $x \in E$. Then if $n, t_{1}, t_{2}, \cdots, t_{n}>0$ and $\sum x_{k}=0$, we have

$$
\begin{equation*}
f\left(x_{k}\right)=f\left(t_{k} x_{k}\right) / t_{k} \leqq r\left(t_{k} x_{k}\right) / t_{k} \tag{6}
\end{equation*}
$$

so that

$$
\begin{equation*}
0=f(0)=f\left(\sum x_{k}\right)=\sum f\left(x_{k}\right) \leqq \sum r\left(t_{k} x_{k}\right) / t_{k} \tag{7}
\end{equation*}
$$

and (5) follows.
To prove sufficiency, let (5) hold and define the functional $p^{(r)}(x)$ by the formula

$$
\begin{equation*}
p^{(r)}(x)=\underset{n, t_{k}>0 ; \Sigma x_{k}=x}{\mathrm{~g} .1 . \mathrm{b} .} \sum_{k=1}^{n} \frac{r\left(t_{k} x_{k}\right)}{t_{k}}, \quad \quad x \varepsilon E . \tag{8}
\end{equation*}
$$

To show that $p^{(r)}(x)$ exists (is finite) for each $x_{\varepsilon} E$, we observe that if $n, t_{1}, \cdots, t_{n}>0$ and $\sum x_{k}=x$, then $x_{1}+\cdots+x_{n}$ $+(-x)=0$ and it follows from (5) that

$$
\sum_{k=1}^{n} \frac{r\left(t_{k} x_{k}\right)}{t_{k}}+\frac{r(-x)}{1} \geqq 0
$$

and hence

$$
-r(-x) \leqq \sum_{k=1}^{n} \frac{r\left(t_{k} x_{k}\right)}{t_{k}}
$$

which implies that $-r(-x) \leqq p^{(r)}(x)$. If in the sum in the right member of (8) we put $n=1, t_{1}=1, x_{1}=x$, we obtain $p^{(r)}(x) \leqq r(x)$. Therefore

$$
\begin{equation*}
-r(-x) \leqq p^{(r)}(x) \leqq r(x), \quad x \varepsilon E \tag{9}
\end{equation*}
$$

We prove next that $p^{(r)}(x)$ is a p-function. If $x_{\varepsilon} E$ and $t>0$, then

$$
\begin{aligned}
p^{(r)}(t x) & =\underset{n, t_{k}>0 ; \Sigma x_{k}=t x}{\operatorname{g.l.b}} \sum_{k=1}^{n} \frac{r\left(t_{k} x_{k}\right)}{t_{k}} \\
& =t \underset{n, t t_{k}>0 ; \Sigma\left(x_{k} / t\right)=x}{\mathrm{~g} .1 . \mathrm{b}} \sum_{k=1}^{n} \frac{r\left[\left(t t_{k}\right)\left(x_{k} / t\right)\right]}{t t_{k}} \\
& =t \underset{n, u_{k}>0 ; \Sigma v_{k}=x}{\mathrm{g.l} . \mathrm{b} .} \sum_{k=1}^{n} \frac{r\left(u_{k} y_{k}\right)}{u_{k}}=t p^{(r)}(x),
\end{aligned}
$$

so that $p^{(r)}(t x)=t p^{(r)}(x)$ for $t>0$. Substitution of $t=2, x=0$ in this formula gives $p^{(r)}(0)=0$. Therefore

$$
\begin{equation*}
p^{(r)}(t x)=t p^{(r)}(x), \quad t \geqq 0 ; x \varepsilon E \tag{10}
\end{equation*}
$$

To prove that

$$
\begin{equation*}
p^{(r)}(x+y) \leqq p^{(r)}(x)+p^{(r)}(y), \quad x, y \mathbf{z} E \tag{11}
\end{equation*}
$$

let $x, y \varepsilon E$ be fixed and let $\epsilon=0$. Choose $m, t_{1}, \cdots, t_{m}>0$ and $x_{1}, \cdots, x_{m} \varepsilon E$ such that $\sum x_{i}=x$ and

$$
\sum_{j=1}^{m} r\left(t_{j} x_{j}\right) / t_{j}<p^{(r)}(x)+\epsilon ;
$$

and choose $n, u_{1}, \cdots, u_{n}>0$ and $y_{1}, \cdots, y_{n} \varepsilon E$ such that $\sum y_{k}=y$ and

$$
\sum_{k=1}^{n} r\left(u_{k} y_{k}\right) / u_{k}<p^{(r)}(y)+\epsilon
$$

Since $m+n, t_{j}, u_{k}>0$ and $x_{1}+\cdots+x_{m}+y_{1}+\cdots+y_{n}=x+y$, it follows from the definition of $p^{(r)}(x+y)$ that
$p^{(r)}(x+y) \leqq \sum_{j=1}^{m} \frac{r\left(t_{j} x_{j}\right)}{t_{j}}+\sum_{k=1}^{n} \frac{r\left(u_{k} y_{k}\right)}{u_{k}}<p^{(r)}(x)+p^{(r)}(y)+2 \epsilon$.
The arbitrariness of $\epsilon>0$ gives (11). Thus $p^{(r)}(x)$ is a p-function and it follows from Banach's theorem that there exists a linear functional $f(x)$ with $f(x) \leqq p^{(r)}(x)$. Using (9), we obtain $f(x) \leqq r(x)$; thus $r(x)$ is an r-function and Theorem 1 is proved.
3. Significance of $p^{(r)}(x)$. From Theorem 1 and its proof, we obtain the first part of our next theorem.

THEOREM 2. If $r(x)$ is an r-function, then the functional $p^{(r)}(x)$ defined by

$$
\begin{equation*}
p^{(r)}(x)=\underset{n, t_{k}>0 ; \Sigma x_{k}=x}{\text { g. . . }} \sum_{k=1}^{n} \frac{r\left(t_{k} x_{k}\right)}{t_{k}}, \quad x \varepsilon E \tag{12}
\end{equation*}
$$

is a p-function with

$$
\begin{equation*}
-r(-x) \leqq-p^{(r)}(x) \leqq p^{(r)}(x) \leqq r(x), \quad x \varepsilon E ; \tag{13}
\end{equation*}
$$

moreover if $p(x)$ is a p-function with $p(x) \leqq r(x)$ for all $x \varepsilon E$, then

$$
\begin{equation*}
-p^{(r)}(-x) \leqq-p(-x) \leqq p(x) \leqq p^{(r)}(x), \quad x \varepsilon E \tag{14}
\end{equation*}
$$

In establishing (13), we use (9) and the fact that, for any p-function, $0=p(0)=p(x-x) \leqq p(x)+p(-x)$ and hence $-p(-x)$ $\leqq p(x)$ for all $x \varepsilon E$. If $p(x) \leqq r(x) ; n, t_{1}, \cdots, t_{n}>0$; and $\sum x_{k}=x$; then

$$
p(x) \leqq \sum_{k=1}^{n} p\left(x_{k}\right)=\sum_{k=1}^{n} p\left(t_{k} x_{k}\right) / t_{k} \leqq \sum_{k=1}^{n} r\left(t_{k} x_{k}\right) / t_{k}
$$

and $p(x) \leqq p^{(r)}(x)$ follows. The remaining inequalities in (14) follow easily, and Theorem 2 is proved. The gist of Theorem 2 is that $p^{(r)}(x)$ is the "greatest" p-function $p(x)$ with $p(x) \leqq r(x)$. In particular, if $r(x)$ is a p-function, then $p^{(r)}(x)$ $=r(x)$.

Since each linear functional $f(x)$ is a p-function, Theorem 2 implies the following theorem:

Theorem 3. If $r(x)$ is an r-function and $f(x)$ is a linear functional with $f(x) \leqq r(x)$, then

$$
\begin{equation*}
-r(-x) \leqq-p^{(r)}(-x) \leqq f(x) \leqq p^{(r)}(x) \leqq r(x), \quad x \varepsilon E . \tag{15}
\end{equation*}
$$

It thus appears that the class of linear functionals $f(x)$ for which $f(x) \leqq p^{(r)}(x)$ is identical with the class of linear functionals $f(x)$ for which $f(x) \leqq r(x)$.
4. Conclusion. The functionals $q(x)$ mentioned in the introduction of ten have the property $q(t x)=t q(x)$ for $t \geqq 0$, and $x \varepsilon E$. Hence it is of interest to note that if

$$
\begin{equation*}
r(t x)=\operatorname{tr}(x), \quad t \geqq 0, \quad x \varepsilon E \tag{16}
\end{equation*}
$$

then the criterion (5) that $r(x)$ be an r-function reduces to

$$
\begin{equation*}
\underset{n>0 ; \mathrm{B} x_{k}=0}{\text { g.l.b. }} \sum_{k=1}^{n} r\left(x_{k}\right) \geqq 0 \tag{17}
\end{equation*}
$$

and that formula (12) for $p^{(r)}(x)$ reduces to

$$
\begin{equation*}
p^{(r)}(x)=\underset{n>0 ; \Sigma x_{k}=x}{\text { g.l.b. }} \sum_{k=1}^{n} r\left(x_{k}\right), \quad \quad x \mathbb{E} E . \tag{18}
\end{equation*}
$$

Cornell University

[^0]: * Presented to the Society, September 8, 1937.
 \dagger S. Banach, Théorie des Opérations Linéaires, Warsaw, 1932, p. 28.
 \ddagger The author intends to discuss these problems at some future time.

