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Amethe Smeaton (Countess von Zeppelin). New York, Harcourt, Brace, 1937. 
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The logical syntax of a symbolic language is a study of the formal properties of 
sentences of that language. It includes the formation rules which determine how the 
symbols of the language can be combined to form sentences, the transformation rules 
which specify when one sentence of the language can be deduced from other sentences, 
and the other properties of and relations between sentences which can be defined on 
the basis of these rules. Syntax is a combinatory analysis of expressions, that is, of 
finite ordered series of symbols. Hence syntax never refers to the meaning of these 
symbols. Hilbert showed that a clear, formal presentation of the foundations of 
mathematics must use a metamathematics which is really a syntax of mathematics. 
The notions of syntax are of central importance for the current growth of mathemati
cal logic. 

The present book systematically develops the concepts of syntax, first for two 
specific Languages I and II, then for an arbitrary language. The specific Language I 
is a definite ("constructivist" or "finitist") language. It contains the usual calculus 
of propositions (not, and, implies, • • • ) and a Peano arithmetic, with a symbol for 0 
and for successor, and with the customary axioms. Variables representing numbers 
are included, but the quantifiers like "there exists an xn occur only in a limited form, 
such as "( 3x)3(P(x))," meaning "there exists an x with x^S such that P(x)," and 
"(Kx)5(Q(x))," denoting the smallest x^5 with the property Q. 

Language II is a much richer language, and contains everything usually included 
in a symbolic logic: all of Language I, plus variables for sentences (that is, proposi
tions), variables for predicates, and variables for functors. Such "functors" are func
tions with any number of arguments of any type. Quantifiers "there exists an x" and 
"for all x" a,re used with all these variables. The predicates, which serve also as classes, 
are classified by the usual (unbranched) type theory, so that a class of numbers is of 
lower type than a class of classes of numbers. The language so obtained is of interest 
because it strives for a maximum of flexibility and not, as is often the case, for a mini
mum of primitive ideas. 

Such symbolic languages are ordinarily restricted to symbols defined by means of 
the primitive symbols of logic and mathematics. Here, in order to make clearer the 
nature of language and to prepare for a subsequent discussion of the language of 
science, Carnap allows Languages I and II to contain not only predicates defined in 
logical terms, but also descriptive predicates and functors. One such descriptive symbol 
is the temperature functor "te," which is to be used so that "fe(3)=5" means "the 
temperature at the position 3 is 5." Carnap contends that all sentences of physics can 
be similarly rendered by a "coordinate" language in which the basic symbols are 
numbers and not names. The general contention seems to neglect the necessity of 
specifying by name the coordinate system and the scale of measurement to be used. 

The syntax of Languages I and II includes the definitions of such important terms 
as "directly derivable," "demonstrable," and "refutable." In Language I, the specifi
cations under which one sentence is directly derivable from other sentences include 
the usual rule, that M 2" and ttA% implies A3" give "As", in the following form: If the 



172 SAUNDERS MACLANE [March 

sentence Si consists of a partial sentence S2 followed by an implication symbol fol
lowed by a partial sentence S3, then S3 is directly derivable from Si and S2. A deriva
tion is a finite series of sentences, such that every sentence of the series is either one 
of the primitive sentences, or a definition-sentence, or is directiy derivable from sen
tences which precede it in the series. A sentence S is demonstrable if there is a deriva
tion in which S is the final sentence. A sentence S is refutable if each free variable-
symbol in S can be replaced throughout S by a constant number-symbol in such a 
way tha t the negate of the resulting sentence is demonstrable. These definitions of 
syntactical terms may indicate how syntax has to do only with the order and arrange
ment of symbols into expressions, sentences, and groups of sentences. 

These syntactical terms all have to do with an enumerable set of objects, the ex
pressions of the language. If a fixed correlation of these expressions to the natural 
numbers is chosen, then each syntactical property of expressions becomes a property 
of the corresponding natural numbers, and can usually be defined by a recursive 
definition. But natural numbers and recursive definitions can be formulated within 
the symbolism of Language I (or I I ) . Hence the syntax of either language can be 
arithmetically formulated within that language. This arithmetized syntax, due to 
Gödel, makes possible the construction of an arithmetic sentence which, syntactically 
interpreted, asserts its own indemonstrability. If the language is consistent,* this 
sentence can be neither demonstrable nor refutable. This discussion in English of 
Gödel's theorem and its striking consequences should prove valuable to many readers. 

Logical positivists formerly distinguished between logic (including mathematics) 
and empirical science, on the ground that the sentences of logic are always resoluble 
(either demonstrable or refutable), while sentences of science need not be resoluble 
(on the basis of logical rules). Gödel's construction of a mathematical sentence which 
is neither demonstrable nor refutable made this distinction untenable. Apparently 
in order to reintroduce the distinction, Carnap defines a class of analytic sentences, 
wider than the class of demonstrable sentences. A class of contradictory sentences is 
also defined, the fundamental result being the theorem that every sentence built 
up out of logical symbols only is either analytic or contradictory. The definition of 
"analytic" in Language II is involved, since it includes an (apparently extraneous) 
reduction process due to the Hilbert school. The more essential features can be illus
trated by the (demonstrable) sentence 

(F) (Sx) (F(0)v~F(x)). 

By the definition, "this sentence is analytic" can be shown to mean f "for every class 
B of number symbols there is at least one number symbol such that either this num
ber symbol does not belong to B, or else the symbol 0 belongs to B." The latter 
sentence seems to be practically a translation of the given sentence into the auxiliary 
language which is being used for syntax. Similar results hold for other sentences. 
Thus, to prove that the principle of mathematical induction in Language II is analytic, 
Carnap must assume the same principle in the syntax language. The statement that 
a certain sentence is analytic amounts essentially to a careful statement, in the syn-

* Gödel's proof requires also that the language be "co-consistent." Carnap's dis
cussion slurs over this point. J. B. Rosser has since shown how the assumption of 
co-consistency can be avoided, Extensions of some theorems of Gödel and Church, Jour
nal of Symbolic Logic, vol. 1, p. 87. 

t The definition itself does not use the "either • • • or" in the syntax language, 
but instead the usual t ruth value table. 
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tax language, of the usual "meaning" of the sentence. Furthermore, the definition 
of "analytic in language Sn would seem to require a syntax language at least as strong 
as the language 5 being studied. The utility of this notion of "analytic" thus might be 
open to doubt, especially as Carnap has adduced no positive evidence of the impossi
bility of a construction according to Gödel of a sentence asserting its own non-analy-
ticity. 

Carnap next turns to the difficult and far reaching subject of general syntax. This 
is a syntactical investigation of any symbolic language whatever. The methods used 
are essentially those of abstract mathematics. Of the language it is assumed only that 
there are rules of formation and rules of direct consequence. The latter rules specify 
when a sentence S is a direct consequence of a class K of sentences. In the special 
case when the class K is finite, we have a rule of inference of the usual sort. On this 
narrow basis Carnap succeeds in defining many different general syntactical terms 
applying to the language: variable, constant, universal operator, arithmetic in a 
language, predicate, functor, translation into another language, the level of a symbol 
(as in the theory of types), and the like. 

Variables, it has long been recognized, are not variable things of some mysterious 
sort; they are rather symbols for which, under certain circumstances, various other 
symbols, called "constants," may be substituted. Carnap gives a detailed analysis of 
this situation, defining such terms as "variable expression," "open expression," "vari
able," and "constant" in any language.* Here an expression is "open" if it contains at 
least one free variable. Following the definition of variable expression in Language I, 
we note that if the symbol "0" in the sentence "0 = 0" be replaced throughout by any 
other symbol for a constant number, the result is still a demonstrable sentence. Ac
cording to the definition given, this fact apparently makes the symbol "0" a variable 
expression.f Furthermore, the sentence " 0 = 0 " turns out to be an open sentence, con
trary to Carnap's previous usage in Language I. 

To determine, by the definition, whether a symbol is a variable, one must know 
all the other variables of the language. This is because one cannot substitute an ex
pression for a variable if the expression contains some other variable which would be
come bound (governed by a quantifier) after the substitution. This would indicate 
that Carnap's definition does not define the phrase, "this symbol is a variable in the 
given language." It defines rather "this class of symbols can be considered as a class 
of variables." There might well be many such classes of variables in a language, and 
in this event the term "variable" and other terms defined from it would have no 
fixed meaning. 

Another fundamental concept of general syntax is that of the "logical" sentences 
of a language 5. In Language I and II Carnap classes the usual primitive symbols of 
logic and mathematics, plus all symbols defined exclusively in terms of these primitive 
symbols, as logical symbols. In general syntax this classification by enumeration is 
to be replaced by a criterion based on the theorem that every logical sentence is deter
minate, that is, is either analytic or contradictory. The following definition is offered. 
"Let Ki be the product of all expressional classes Ki of S, which fulfill the following 
four conditions. (1) If Ai belongs to Ki, then Ai is not empty and there exists a sentence 
which can be subdivided into partial expressions in such a way that all belong to Ki 
and one of them is Ai. (2) Every sentence which can be thus subdivided into expres-

* The definitions cannot be significant for every language, for H. B. Curry has 
developed a language, "combinatory logic," which contains no ordinary variables, 

f The contrary assertion is made without proof on p. 195. 
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sions of Ki is determinate. (3) The expressions of Ki are as small as possible, that is to 
say, no expression belongs to Ki which can be subdivided into several expressions of 
Ki. (4) Ki is as comprehensive as possible, that is to say, it is not a proper sub-class of 
a class which fulfills both (1) and (2). An expression is called logical if it is capable of 
being subdivided into expressions of Ki ; otherwise it is called descriptive. " 

The reviewer fails to understand the rôle of condition (4). For suppose that a class 
Ki contains some expression A\ which is not a sentence. By the first condition, A\ is 
then contained in a sentence S\. According to condition (4), S\ must be added to 
the class Ki, although by condition (3), Si cannot be added to Ki. This conflict 
between conditions (3) and (4) could be avoided by requiring in (4) that Ki is not a 
proper subclass of a class satisfying (1), (2), and (3) (not merely (1) and (2)). The so 
modified definition still would not seem to agree with previous usage. For in Language 
I let Ki be the class of all logical symbols in the usual sense, while Kz is the class con
sisting of all expressions of the form "( 3 x ) " and all logical symbols, except the exist
ence-operator " 3 . " These classes satisfy conditions (1) to (3). If necessary, they can 
be extended to larger classes K2' and Kz', respectively, which also satisfy (4). Then 
Kz' cannot contain the symbol " 3 , " while K2' cannot contain the symbol "( 3# ) , " 
so that Kit which is part of the intersection of K2' and Kz', can contain neither " 3 " 
nor "( Sx)." It follows that sentences containing " 3 " , and logical in the usual sense 
could not be logical according to this general definition. 

This difficulty arises because condition (3) fails to have its intended effect upon the 
compound expression "( 3 x ) . " The definition of "logical" might be naturally modified 
as follows: Consider those classes Ki which satisfy (1) and (2) and are maximal with 
respect to these conditions. For each class Ki denote by Li the class of those expres
sions of Ki which cannot be subdivided into several expressions of Ki, and let K\ be 
the intersection of all Li. This avoids the previous difficulty, only to meet another. 
For in Language I, consider a descriptive functor ƒ (in ordinary usage, ƒ is an empiri
cally defined function y=f(x), where y and x represent integers). Let the class Ki 
contain the expressions "/(O)," " = ," and " ^ , " and all sentences constructed from 
these expressions. The only such sentences are 

/(0) = /(O), ~ [/(O) = /(O)], [/(O) = /(O)], • • -, 

As tt~n is the symbol for negation, all these sentences are either demonstrable or 
refutable, and hence are determinate. Thus Ki satisfies (1) and (2), and so can be 
embedded in a maximal class satisfying (1) and (2). No numeral, such as 3, can be 
contained in this class, for "/(O) = 3 " is not a determinate sentence. Hence numerals 
are not logical symbols under the modified definition, contrary to the usage in Lan
guage I. Could the definition of "logical" symbols be further modified to avoid such 
difficulties? 

Such technical points might raise doubts as to the philosophical thesis Carnap 
wishes to establish here: that in any language whatsoever one can find a uniquely 
defined "logical" part of the language, and that "logic" and "science" can be clearly 
distinguished. 

Many of the other ingeniously defined concepts of Carnap's general syntax are 
free from objection. However, the points discussed above show how difficult is the 
task of defining so many relatively specific concepts in an absolutely arbitrary lan
guage. The notion of "any language" may be just as treacherous as was the notion 
of "any curve" before the critique of analysis situs. Might it not be possible to de
velop the concepts of general syntax in a more postulational manner? Thus, one might 
postulate tha t in the language there are certain symbols, designated as "logical" (or 
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as "variables"), satisfying certain conditions analogous to those used in the definitions 
discussed above. Such an approach would recognize the obvious fact that such general 
syntax, though formulated for any language, is relevant chiefly for languages of the 
same general type as the Whitehead-Russell calculus, and it would make possible 
rigorous proofs tha t the terms defined do in fact agree with corresponding terms as 
applied to special languages. If such a postulational approach were possible, it would 
follow the general lines indicated by Carnap's far-reaching and pioneering investiga
tions. 

Many confusions and misunderstandings in logic, mathematics, and philosophy 
can be cleared up, as Carnap shows, by an understanding of the nature and possibili
ties of syntax. The notion of strict implication, as used in the Lewis logic of modalities, 
yields one such instance. Usually "strict implication" must be defined in terms of 
"necessity," so tha t the postulates must be chosen as the natural properties, if any, 
of this abstruse and perhaps fuzzy notion. But UA strictly implies Bn can be trans
lated into the clean-cut syntactical statement, "The sentence ' # ' is a logical conse
quence of the sentence 'A,1 according to the rules of such and such a language." 
With this reformulation we can now unambiguously determine the properties of 
strict implication. We also recognize that these properties depend on the language 
concerned. In the same fashion, any special "logic of modalities" could be replaced 
by a syntactical translation. Carnap does not assert that it must be so replaced; he 
follows here and elsewhere a principle of tolerance in syntax: "It is not our business 
to set up prohibitions, but to arrive a t conventions." 

Throughout the book, Carnap makes a meticulous and clear-cut distinction be
tween symbols and designations of symbols. The sentences "co is an ordinal type" and 
"co is a letter of the alphabet" appear to have the same subject. Actually, the first 
sentence is about the object denoted by "co," the second about the symbol "co," 
which is thus to be written in quotations. In this case the distinction is not essential, 
but in studying syntax it is requisite, for the sentences of syntax are precisely those 
which speak about symbols. For instance, to say that a sequence is calculable is to 
make a syntactical assertion about the sequence. Hence it must always be calculable 
with reference to a certain language. 

In philosophical discussion it is important to recognize pseudo-syntactical sen
tences which do not appear to belong to syntax, but which can be translated into 
syntax. Carnap, in the last section of this book, shows how many fake problems and 
misunderstandings can be cleared up by such an analysis of sentences. For instance, 
"time is continuous" can be translated as "the real number expressions are used as 
time coordinates." "The world is a totality of facts, not of things" becomes "Science 
is a system of sentences, not of names." Some of his philosophical distinctions, such 
as tha t (p. 289) between the meaning of an expression and the object designated by 
an expression, are essentially dependent on the definition of "logical" sentences an
alyzed above. Such philosophical distinctions may therefore be untenable. The book 
ends with an eloquent discussion of two related theses: Any philosophy is either mean
ingless or is simply the logic of science; the logic of science is the syntax of the lan
guage of science. 

The book contains many other illuminating discussions of various aspects of sym
bolic logic. In particular, we find an extraordinarily general statement of Gödel's 
theorem for an arbitrary language (unfortunately no proof and no reference to any 
printed proof is given); a discussion of various famous antinomies, syntactical and 
otherwise; a discussion of a paradox in certain axiomatic set-theories, according to 
which all sets are denumerable—syntactically denumerable, but not denumerable 
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within the language of the set-theory itself. These three questions, and some of the 
other topics, were not included in the German edition of the book. As a whole, the 
book is a stimulating and fruitful discussion of syntax, a subject not yet in a defini
tive form but even now having a wide range of application in mathematics, science, 
and philosophy. 

The following minor corrections might be noted. On page 40, Theorem 14.3 can
not be directly proven by induction. One must rather prove by induction that every 
logical sentence with n distinct free variables either is contradictory or is analytic 
with not more than n uses of the non-finite rule DC 2. On page 104, RR 9, read "un
limited operators" for "unlimited sentential operators." On page 21 replace the def
inition of an open expression by "If a variable which is free at some position in A\ 
occurs in Ai at that position, then A\ is called open." 
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