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SOME PROPERTIES OF FUNCTIONS OF 
EXPONENTIAL TYPE 

RICHARD DUFFIN AND A. C. SCHAEFFER 

Suppose that f(z) is an entire function such that 

/ (* )=0(«M'l) , 

and on the real axis ƒ(z) is real and bounded by 1. First it is shown 
that the function cos \z—f(z) cannot have complex zeros. Moreover 
its real zeros are simple at the points where the strict inequality 
\f(z)\ <1 is satisfied. This theorem is then used to find a "best 
possible" dominant over the complex plane of the class of functions 
f{z). Finally it is shown that these results contain two theorems of 
S. Bernstein. 

THEOREM 1. Letfiz) be an entire junction of z = x+iy, real for realz, 
and satisfying the conditions : 

(i) I /(*) I ̂  i 
on the real axis, and 

(2) l / t o l - O ^ " 1 ) , X > 0 , 

uniformly over the entire plane. Then for every real a the function 

cos (\z + a) — f(z) 

has only real zeros, or vanishes identically. Moreover all the zeros are 
simple, except perhaps at points on the real axis where fix) = ± 1. 

In the proof of Theorem 1 we shall use the following result of 
Pólya and Szegö,* which we state as a lemma. 

LEMMA 1. If f{z) satisfies the conditions of Theorem \, then actually 

(3) l / M l ^ ' " . 
PROOF. By the hypotheses of Theorem 1 the function f(z)eiXz is 

bounded on the positive halves of the real and imaginary axes and is 
0($x'*l) in the angular region between them. Then by the Phragmén-
Lindelöff principle ƒ(z)ea* is bounded throughout the first quadrant. 
In the same way one shows that it is bounded in the second quadrant. 

* G. Pólya and G. Szegö, Aufgaben una Lehrsiïtze aus der Analysis, vol. 2, p. 36, 
prove this by a different method. 

f E. C. Titchmarsh, Theory of Functions, p. 177. 
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Then f(z)eiXz is bounded by 1 on the real axis and by some constant 
in the upper half-plane. Again applying the Phragmén-Lindelof 
principle, this time with the angular region the upper half-plane, we 
see that |jfOs)e*X2:| ^ 1 in the upper half-plane, so (3) is true for y^O. 
When we use the function ƒ (z)e~iXz the same method shows that (3) is 
true for y^O. 

To prove Theorem 1 it will be sufficient to consider the function 
cos \z —f(z), that is, the case a = 0. Let e be some positive number less 
than 1, and consider the function 

sin \ez 
/ • . co -——(i -« ) /« i -«>) . 

A€0 

By Lemma 1, 

(4) | ƒ.(«) | ^ —r-r (1 - e)eM"IU-> < — j - p ; 
Xe I z I \e\z\ 

so if y0 is sufficiently large, we have, on the lines y= ±y0, 

| ƒ.(«)! < | c o s X s | . 

It follows from (4) that , if K is a sufficiently large positive integer, 

| ƒ.(«) | < | cos \z | 

on the lines x= ±Kw/\. 
Let f be a closed rectangular contour consisting of segments of the 

lines x = ±Kw/\, y= ±yo. We have shown that | cos Xz\ > \f€(z)\ on f, 
so by Rouché's theorem* the function 

COS \2 — fe(z) 

has the same number of zeros in f as cos Xs, that is, 2K zeros. On the 
real axis |/«(#)| ^ 1 —e, so at the points w/X, (̂  = 0, ± 1 , ± 2 , • • • ) , 
we have |fe(z) \ < \ cos \z\. Thus cos \z—fe(z) is alternately plus and 
minus at the 2K+1 points VT/\} (P— — iT, —K+l, • • • , K) ; so inside 
f it has at least 2K real zeros. But we have shown that there are 
exactly 2K zeros of cos \z—fe(z) in f. Hence there are no com­
plex zeros, and there is exactly one (simple) zero in each interval 
0>7r/X, (J> + 1)7T/X), (J>= —K, - • • , K — 1). Taking larger values of yo 
and K we see that cos \z—fe(z) has exclusively real and simple 
zeros, which lie in the intervals ï>7r/X<2<(j> + l)7r/X, (v integer, 
— oo <v< oo). 

When e—K) the function cos \z—f€{z) approaches cos \z—f(z) 

* E. C. Titchmarsh, loc. cit., p. 116. 

file:///e/z/
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uniformly in every bounded domain. But if the latter function is not 
identically zero it follows from a theorem of Hurwitz* that its zeros 
are limit points of the zeros of cos \z—ft(z). Thus cos \z—f(z) cannot 
have non-real zeros; moreover it has an infinite number of real zeros 
which are all simple, except those at the points vir/\ iff(vw/X) = ( — 1)". 
Every interval VT/\<Z<(V + 1)T/\ a t the endpoints of which 
| ƒ (s) | < 1 contains exactly one zero. If f(vir/\) = ( — 1)", we have a 
double zero at vir/\ but no further zeros in the interior or at the end-
points of the interval ((*> — 1)TT/X, (Z> + 1)7T/X). This proves Theorem 1. 

We have shown that, if f{z) satisfies the conditions of Theorem* 1, 
then actually the inequality (3) is satisfied. There is, however, no 
such function for which (3) becomes an equality at points off the 
real axis. Using Theorem 1 we can show that the stronger inequality 

(5) | / ( * ) | g c o s h X y , 

is satisfied. If /(s) = cos (\z+a)f a real, then the equality holds along 
certain lines parallel to the imaginary axis. 

THEOREM 2. If f(z) satisfies the conditions of Theorem 1, then 

(6) | f(z) | ^ cosh \y 

and, unless f{z) is of the form cos(Xs+a), the equality can occur only 
on the real axis. 

PROOF. I t will be sufficient to show that (6) is true on the imaginary 
axis. Suppose f{z) is not of the form cos(Xs+a), and for some y, 
(\y\ >0)> w e have 

| f(iy) | ^ cosh \y. 

From the expansion 

cos (\iy + jÖ) = cos 0 cosh \y — i sin fi sinh \y 

we see that cos (X£y+j3) has, for a suitable real /?, the same amplitude 
as f(iy). Since | cos(Xfy+j8)| ^cosh \yS\f(iy)\, there is a real 7, 
( 0 < Y ^ 1 ) , such that | Y/feO] = |cos (Xfy+/3)|. Then 

cos (Xs + 0) = yf(z) 

at the point z = iyf since the amplitudes and magnitudes are the 
same. But yf(z) satisfies the conditions of Theorem 1, so cos (XJS+/3) 

—yf(z) can have only real zeros. The contradiction proves Theo­
rem 2. 

* E. C. Titchmarsh, loc. cit., p. 119. 
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I t has been shown by S. Bernstein* that if f(z) satisfies the condi­
tions of Theorem 1, then 

1/(2)1 ^X 
on the real axis. Szegö (for the case in which ƒ(z) is a trigonometric 
polynomial) and later Boas (under essentially the same conditions as 
in Theorem 1) obtained f the stronger inequality 

(7) {/'(2)}2 + X2{/(2)}*=g\2 

on the real axis. The authors obtained a generalization of (7) for 
complex values of z in a previous paper. Using Theorem 1 we can 
now prove this corollary: 

COROLLARY. If f(z) satisfies the conditions of Theorem 1, then (7) 
is true on the real axis. 

PROOF. Suppose f(z) satisfies the conditions of Theorem 1 and is 
not of the form cos (Kz+a). At points of the real axis where f{z) == ± 1 
we must have f'(z) = 0, so (7) is certainly true. Hence suppose that, 
at some point z0, \f(z0) | < 1, and (7) is not satisfied. Then by suitable 
choice of real 7, (0 <y g 1), we have the equality 

(8) {yf'(z)}* + W{yf(Z)}* = \K 

Then since cos (Kz+a) satisfies the differential equation 

J — cos (X* + a) \+ X2[cos (X* + a)]2 = X2, 

there is a real a so that, at the point Zo> 

d 
cos (Kz + a) = yf(z), — cos (\z + a) = yf(z). 

dz 
Thus the function 

cos (Xs + a) — yf(z) 

has a double zero at the point z0, where 17/(20) | < 1 ; but by Theorem 1 
this is impossible. The contradiction proves the corollary. 

Using Theorem 2 we prove a second theorem^ of S. Bernstein. 

* S. Bernstein, Comptes Rendus, vol. 176 (1923), p. 1603. 
t G. Szegö, Schriften der Königsberger Gelehrten Gesellschaft, Naturwissen-

schaftliche Klasse, vol. 5 (1928), p. 69; R. P. Boas, Transactions of this Society, 
vol. 40 (1936), p. 287. See also Van der Corput and Schaake, Compositio Mathe­
matica, vol. 2 (1935), p. 321; R. J. Duffin and A. C. Schaeffer, this Bulletin, vol. 43 
(1937), p. 554. 

% S. Bernstein, Communications de la Société Mathématique de Charkow, (2), 
vol. 14. See also M. Riesz, Acta Mathematica, vol. 40 (1916), p. 337. 
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BERNSTEIN'S THEOREM. Let P(s) be a polynomial of degree n or less 
with real coefficients such that in the interval ( — 1 , 1) of the real axis 
\P(s)\ SI. If A andB are the semi-axes of an ellipse passing through 
the point s and having foci at the points 1 and — 1, then 

(9) \P(s)\ < {A+BY. 

We shall prove that if P(s) satisfies the conditions of Bernstein's 
theorem, then the stronger inequality 

(10) | P(s) | S |{(A + BY + (A + B)-"} 

is satisfied. 
PROOF. If P(s) satisfies the conditions of Bernstein's theorem it is 

clear that P(cos z) is a polynomial of degree n in cos z and is bounded 
by 1 on the real axis, so it satisfies the conditions of Theorem 2 with 
\ = n. Then we have 

(11) | P(cos z) | S cosh ny, 

where z = x+iy. Let s = <r+it be any fixed point not in the interval 
( — 1 , 1) of the real axis, and choose a z so that s = cos z. Then we 
have the relations 

e = cosx cosh^, 

/ = — sin# sinhj, 

and on eliminating x we obtain the equation 

a2 t2 

—+ —= 1, 
A2 B2 

where 
A = cosh \ y\9 B — sinh | y | . 

Thus the point s lies on an ellipse with center at the origin and semi-
axes 4̂ and By and the foci are at the points 1 and —1 since ^42—B2 = l. 
Since A+B = e\y\ we see that 

cosh ny = |{(A + B)n + (A + B)~n], 

and on putting this in (11) we have (10), namely, 

| P(s) | = | P(cos z)\£l{(A+ BY +(A+ BY"}. 

This is a "best possible" inequality in the sense that if P(s) is the nth 
Tchebycheff polynomial, Tn(s)= cos (n cos - 1 s), then (10) becomes 
an equality along certain lines in the complex plane. 

PURDUE UNIVERSITY 


