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ABSTRACT RESIDÜATION OVER LATTICES* 

R. P. DILWORTH 

Introduction. The idea of residuation goes back to Dedekind [3 ], f 
who introduced it in the theory of modules. It has since had extensive 
applications in the theory of algebraic modular systems [ó], in the the­
ory of ideals [8], and in certain topics of arithmetic [9]. On account 
of its fundamental role in several fields of modern algebra, it is de­
sirable to consider residuation abstractly. A postulational treatment 
also is a necessary preliminary to the investigation of the structure 
properties of the residual. We give such an abstract formulation. 

In a commutative ring with unit element the residual of an ideal 
B with respect to an ideal Ay written A :B, is an ideal with the prop­
erties AD (A :B)B; if A D XB, then A : B D X, Although the residual 
is defined in terms of multiplication, most of its important proper­
ties are concerned with the cross-cut and union of ideals. Hence we 
shall consider a residual defined over a system having only these two 
operations, that is, over a lattice [2]. As an example of a system 
having a residual but no ordinary multiplication we consider in §5 
residuation in a Boolean algebra. 

In §1 the postulates for abstract residuation are given. Equality is 
taken as an undefined relation with cross-cut, union, and residual as 
undefined connections. In §2 we list a few systems satisfying the 
postulates. In §3 it is shown that the system defined by the postulates 
is a lattice and that the residual has all of its important properties 
which are independent of multiplication. Consistency and independ­
ence proofs are given in §4. 

I wish to express my thanks to Professors Morgan Ward and E. T. 
Bell for their many suggestions and helpful criticisms during the 
preparation of this paper. 

1. Postulates for residuation. Let S be a set of elements A, B, 
C, • • • ; and let = , [ , ] , ( , ) , and : be relations, satisfying the postulates 
i-iv; 1-3; I-V. In what follows, o denotes an arbitrary one of the rela­
tions [ , ], ( , ), : and the letters A, B, C, • • • , appearing in the 
statement of the postulates indicate arbitrary elements of S. 

POSTULATE i. A o B is in S whenever A and B are in S. 

* Presented to the Society, November 27, 1937. 
t Numbers in square brackets refer to the bibliography a t the end of the paper. 
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POSTULATE ii. If A = B, then CoA = CoB and A o C = B o C* 
POSTULATE iii. If A=B and B = C, then A = C. 
POSTULATE iv. If A=B, then B=A. 
POSTULATE 1. [[A, J8], C]=[B, [A, C]].f 
POSTULATE 2. [A, A] =A. 

POSTULATE 3. There is an element I in 2 such that [A, I] —A for all 
A in S. 

As immediate deductions from these postulates we have : 

1.1. [I,A]=[A,I]=A. 

PROOF. [I,A]=[I, [A, I]] = [[A, / ] , / ] = [A, l]=A by ii, 1,3, 
iii. 

1.2. The element I in Postulate 3 is unique. 

POSTULATE I. A :A = I . 

POSTULATE I I . (A:B):C=(A:C)\B. 
POSTULATE III. A : (B, C) = [A :B, A : C]. 

POSTULATE IV. [A, B]:C=[A:C, B:C]. 
POSTULATE V. If A:B=B:A = 1 , then A ^B. 

DEFINITION 1. A :B = 1 is written AoB. 
DEFINITION 2. [A, B] =B is written A >B. 

2. Examples. We list a few systems satisfying the postulates i-V. 
1. Let S be the set of ideals in a commutative ring with unit ele­

ment. Let [ , ] and ( , ) be the cross-cut and union respectively. Let 
A :B be defined by A D (A :B)B, if A D XB, A:BDX. 

2. Let S be the set of positive integers with [ , ] and ( , ) the 
L. C. M. and G. C. D. respectively. Let A :B be defined by A/(A, B) 
with 1=1. 

3. As in 2, let S be the set of positive integers with [, ] and ( , ) 
defined as max ( , ) and min ( , ) respectively. If now A :B is defined 
by max (0, A—B) and 0 is taken to be the element / , the postulates 
are satisfied. 

4. Let S be the integers ^n with [ , ] and ( , ) defined by min ( , ) 
and max ( , ), respectively. Define A:B as min (nf n+A—B) with 
ƒ = ». 

5. Let S be a Boolean algebra with [ , ] , ( , ) the Boolean opera­
tions -, v respectively. Let A:B=A v B ' . 

* It is understood that the relations in the postulates hold whenever the respective 
elements and the indicated combinations are in 2. 

t To facilitate obtaining an independence example, the commutative and associ­
ative laws have been combined in one postulate. 
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3. Deductions from the postulates, f We have, first, 

2.1. A=A by 3, iv. 
2.12. A o B and Bo A is equivalent to A =B% by V, Definition 1. 
2.13. If M:A=M:Bfor all Min 2, then A =B. 

PROOF. M=A, B respectively give 

2.14. A:B = A'.A = I and B:A = B:B = I by ii, I, iv. 

Hence A = B by V. 
2.15. [A,B]=[B,A]. 

PROOF. [A, B] = [[A, B], / ] = [B, [A, l ] ] = [B, A] by 3, 1, 3, ii. 

2.16. (4, S) = (-B, .4) by 111,2.15, 2.13. 
2.17. [[A, B], C] = [A, [B, C)] by 2.15, 1. 
2.18. ((A, B), C) = (A, (B, C)) by III, 2.17, III, 2.13. 
From 2.17 and 2.18 we may write [A, B, C] for [[A, B], C] 

and (A, B, C) for ((A, B), C). Generally [Au A2, • • • , An], 
(At, A^ • • • , An) are unambiguous. 

*2.19. M : (Alt Ai, • • • , An) = [M:Alt M:A2, • • • , M:A„] by in­
duction from III. 

*2.2. [Au Ai, • • • , An]:M= [AilM, Ai.M, • • • , An:M] by in­
duction from IV. 

2.22. (A,A)=A. 

PROOF. M:(A, A)= [M:A, M:A\=\M,.M\\A=M\A by III, 
IV, 2. Hence (A, A) =A by 2.13. 

2.23. (A,B)oA. 

PROOF. (A, B):A = [(A, B):A, l]=[(A, B):A, (A, B):(A, B)] 
= (A, B):(A, (A, B)) = (A, B):((A, A), B) = (A, B):(A, B)=I by 
3, I, III, 2.18, 2.22, I. 

2.24. If A>B,then AoB. 

PROOF. [A,B] =B gives A :B = [A :B, I] = [A :B,B:B]= [A, B] :B 
=B:B = I by 3, I, IV, I. 

2.25. If [A, B]=B, then (A, B)=A. 

PROOF. A:(A, B) = [A:A, A:B]=[l, A:B]=A:B = I by III, I, 
3, 2.24. Hence (A, B) =A by 2.23, V. 

2.26. (A, /) = (/, A)= I by 2.25, 3, 2.16. 

t The theorems giving the essential properties of the residual will be starred. 
| By "equivalent" we mean formal equivalence. 
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*2.27. I:A=I. 

PROOF. I:A = [I, I:A]=[l:I, I:A]=I:(I, A) = I:I = I by 1.1, 
I, I I I , 2.26, I. 

*2.28. A:I=A. 

PROOF. (A : (A : / ) ) : 1= (A : I) : (A : I) = ƒ by II , I. / : (A :(A:I))=I 
by 2.27. Hence A : (A : I) = I by V. But (^ : I): A = (^ :A):I = 1:1=1 
by II , I. Hence yl : / = . 4 by V. 

2.29. A D [A, B] by 2.17, 2, 2.24. 
2.3. If A-DB, then A>B. 

PROOF. [A, B]:B=[A:B, B:B] = [l, l]=I by IV, I, 2. But 
B: [A, B] = I by 2.29, 2.15, Definition 1. Hence [/I, £ ] = 5 by V. 

2.31. i s l w equivalent to A>B by 2.24, 2.3. 
2.32. (il, [4 , B]) =A by 2.29, 2.31, 2.25. 
2.33. [A, (A, B)]=A by 2.23, 2.31, Definition 2. 
2.34. 2 M a lattice. 

PROOF. We show that Birkhoff's axioms Ll -L4f are satisfied if we 
take [ , ] s n . For LI is i; L2 is 2.15 and 2.16; L3 is 2.17 and 2.18; 
L4 is 2.32 and 2.33. 

*2.35. A:(A:B)?B by II , I. 
*2.4. If BoC,thenA:CoA:B. 

PROOF. A : (A :B) = B and B = C by 2.35. Hence (A : (A :B)) :C = I 
by 2.34, Definition 1. Then (A : C) : (A :B) = (A : (A :B)) : C = I by II . 

*2.41. A:B=A:(A,B) by I I I , I, 1.1. 
*2.42. [ i4 ,2? ] :B=4: .B , by II, I, 3. 
*2.43. / 3 i : £ 3 i by 2.27, II, I, 2.27. 
*2.44. A:(A:(A:B))=A:B. 

PROOF. [A:(A:(A:B))]:(A:B) = [A:(A:B)]:[A:(A:B)] = I by 
II , I. (A:B):[A:(A:(A:B))] = [A:[A:(A:(A:B))]):B = I by II . 
Since A:[A:(A:(A:B))]DA:(A:B) and A:(A:B)oB by 2.35, 
hence A : (A : (A :B)) =A :B by V. 

I t will be noted from 2.44 that A:(A:B) and A:B are mutually 
residual with respect to A. 

*2.45. If A:C=A:B, then A:(A:B) = C by II , I. 

t G. Birkhoff, O» tóe /otóce theory of ideals, this Bulletin, vol. 40 (1934), p. 613. 
LI, L2, L3, and L4 are his axioms for a lattice. 
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These theorems are sufficient to show that the usual properties of 
the residual are deducible from the postulates of §1. 

Since the residual as here considered is independent of multiplica­
tion, there is a residual completely dual to that defined above. The 
dual may be defined by the postulates I ' -V' : 

POSTULATE I'. A:A—E where E is the null element of the lattice. 
POSTULATE I I ' . {A :B) :C=(A: C) :B. 
POSTULATE III ' . A : [B, C] = (A :B, A : C). 

POSTULATE IV7. (A, B) : C = {A : C, B : C). 

POSTULATE V'. If A:B=B:A=Ey then A=B. 

Thus, for the integers 0, 1, 2, • • • , n as the given set, let [ , ], 
( , ) be defined as min ( , ), max ( , ) respectively with E = 0 and 
I = n. Then A :jB = min (ny n+A —B) is a residual satisfying the pos­
tulates of §1, while A : 23 = max (0, A — B) is a residual satisfying the 
second set of postulates. 

4. Consistency and independence proofs, f 

Consist­
ency 

Independ­
ence 

1 

2 

3 

I 

1 
2 

1 
2 
3 

1 
2 

1 
2 
3 

1 
2 

[J 

1 2 

1 2 
2 2 

1 2 3 

1 1 2 
2 2 2 
3 3 3 

1 2 

1 2 
2 1 

1 2 3 

1 1 1 
1 2 1 
1 1 3 

1 2 

1 2 
2 2 

1 
2 

1 
2 
3 

1 
2 

1 
2 
3 

1 
2 

(,) 

1 2 

1 1 
1 2 

1 2 3 

1 1 1 
2 2 2 
2 3 3 

1 2 

2 1 
1 2 

1 2 3 

1 3 3 
3 2 3 
3 3 3 

1 2 

1 1 
1 2 

1 
2 

1 
2 
3 

1 
2 

1 
2 
3 

1 
2 

1 2 

1 1 
2 1 

1 2 3 

1 1 1 
2 1 1 
3 2 1 

1 2 

1 1 
2 1 

1 2 3 

1 1 1 
2 1 1 
3 2 1 

1 2 

1 1 
| 2 2 

[ [ l , 3 ] f 2 M 3 f [1,2]] 

[2, 2]^2 

[2,1]^2, [3,2]^3, [2,3]^2 

2 :2^1 



1938] ABSTRACT RESIDUATION 267 

II 

III 

IV 

V 

1 
2 
3 

1 
2 

1 
2 
3 
4 

1 
2 

[,] 

1 2 3 

1 2 3 
2 2 3 
3 3 3 

1 2 

1 2 
2 2 

1 2 3 4 

1 2 3 4 
2 2 3 4 
3 3 3 4 
4 4 4 4 

1 2 

1 2 
2 2 

1 
2 
3 

1 
2 

1 
2 
3 
4 

1 
2 

( , ) ' 

1 2 3 

1 1 1 
1 2 2 
1 2 3 

1 2 

1 1 
2 2 

1 2 3 4 

1 1 1 1 
1 2 2 2 
1 2 3 3 
1 2 3 4 

1 2 

1 1 
1 2 

1 
2 
3 

1 
2 

1 
2 
3 
4 

1 
1 2 

: 

1 2 3 

1 1 1 
3 1 1 
3 2 1 

1 2 

1 1 
2 1 

1 2 3 4 

1 1 1 1 
2 1 1 1 
3 3 1 1 
4 2 2 1 

1 2 

1 1 
1 1 

(3:1):2^(3:2):1 

2:(2, 1)^[2:2, 2:1] 

[4, 3]:2^[4:2, 3:2] 

2:1 = 1:2 = 1 but 2^1. 

t The independence examples for i-iv are omitted. 

5. Residuation in a Boolean algebra [ l ] . If we take S to be a 
Boolean algebra and interpret [ , ], ( , ) as the Boolean operations •, 
v respectively, then it is readily verified that 2 satisfies postulates 
i-V if we define residuation by A \B=A vB'. Moreover we have the 
following theorem: 

THEOREM. Let lïbea Boolean algebra and let [ , ] , ( , ) be the Boolean 
operations •, v respectively. Then the only Boolean operation satisfying 
postulates I-V is A:B=AvB'. 

PROOF. Write A : B as a general Boolean function of A and B 

A:B = KxAB v K2AB' v KzA'B v KtA'B'. 

Then 

1:1 = Kx = 1, 0:1 = Kz = 0, 

1:0 = K2 = 1, 0:0 = Kt = 1. 

Hence 

A:B = ABvAB'vA'B' = A(Bv B')vA'B' = AvA'B' 

= (AvAB')vA'B' = Av(AvA')B' = AvB', 
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and as above this is sufficient that postulates I-V be satisfied. 
With this definition of A : B, A D B becomes the usual inclusion re­

lation of the algebra of classes [5]. 
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A NOTE ON THE MAXIMUM PRINCIPLE FOR 
ELLIPTIC DIFFERENTIAL EQUATIONS 

FRITZ JOHN 

Let u(xi, • • • , xn) denote a twice continuously differentiable func­
tion of xi, • • • , xn in some region R. We write du/dxi = Ui, d2u/dx{dxk 
= Uik, and occasionally (x) for (xi, • • • , xn). A point (c) = (ci, • • • , cn) 
of R may be called a proper maximum of u, if 

Ui(c) = 0 for i = 1, • • • , n, 

Z ««WW* < 0 for all (&, • • • , in) * (0, • - - , 0). 

A partial differential equation 

(1) X) ^ih{oc)uih{x) + X) bi(x)Ui(x) = 0 
i, 1c i 

(where the aik and bi are defined in R) is called elliptic if for every 
(x) of R 

X 0<*(aOfc£* è 0 

for all (£i, • • • , in) and < 0 for some (£i, • • • , £n). 


