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SOME THEOREMS ON SUBSEQUENCESt
HUGH J. HAMILTON

It is obvious that, for any real sequence for which the sum 2 of the
moduli of its elements exists and is finite, there exists a subsequence
such that the modulus of the sum of its elements is not less than 2/2.
The purpose of this paper is to formulate and investigate analogous
statements for complex sequences.

Let U be the class of sequences, finite or infinite, {ak} (de-
noted alternatively by 4) of non-zero complex numbers for which
Z| akl <o, and {a/} (denoted alternatively by S), the general sub-
sequence of {a;} for fixed {as}. Let B be the class of sequences {6}
(denoted alternatively by B) of non-zero complex numbers for which
ZI bkl =0, and {b,’ } (denoted alternatively by T), the general sub-
sequence of {b;} for fixed {b:}.

The following facts will be established: (i) Given any sequence
{ar}€d, there then exists a subsequence {aj} for which | a}|
=sups |>.a!|. (i) If p=infy maxg |2 af|/ D ak|, then p=1/m.
(iii) No sequence {as}ed exists for which maxs |2 af|/ > |ax| =p.
(iv) Given any sequence {bk}e%, there exists a subsequence {b;*
such that}

N N
tim sup | 330 /32| x| = sup lim sup [ 307 | / 20| b
1 1

% N
= lim sup sup | 2./6/ | /2| bx| = lim sup max IZ’bH/Z{bkl.
N T 1 N T 1

(v) If ¢ =infp maxy lim supy IZ’b,{ I /Z’” bk[ , then o =p. (vi) There ex-
ists a sequence {b;} B for which maxr lim supy |20/ | / 2 V| b4| =0.
Use will be made of abbreviations of the following sort: 4z=|as/,
¢r=arg a;. For definiteness, the function “arg” will mean, throughout
this paper, principal argument. Given any sequence {ak} €, define

F¢)= D, Aicos (¢ — ¢

cos (¢—¢,)>0

=EAk{COS(¢—¢k)+lCOS(¢"'¢k)l}/2, 0= ¢ = 2w

t Presented to the Society, November 27, 1937.

1 The notation Y’ indicates summation over precisely those elements of the sub-
sequence which occur among the elements of the original sequence summed elsewhere
in the formula.
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Being continuous, F(¢) attains its supremum. In what follows, to
and including Theorem 3, {ak} will signify an arbitrary but fixed
sequence of class .

THEOREM 1. Let ¢* be such that F(¢*)=max F(¢), and let {a}"}
be the sequence of those elements of {ai} for which cos (¢*—¢x)>0.

Then sups | Y af | = F(¢*) = |2 a}|.
Proor. Let {a," } be any subsequence of {ak}, and define
¢=arg 2 a/. Then
| 2 af| 2 22 4F cos (6% — ¢) = F(¢*) 2 F(9).
= 2 Aicos(p—¢n) = L Afcos(p—¢f) =| 2 af|

cos (p—o1)>0
This establishes (i).
COROLLARY 1.1. In the notation of Theorem 1, $* =arg Y ak.

Proor. Taking {a/ } = {a}} in the inequalities of Theorem 1, we see
that IZa}"[ => A¥ cos (¢*—¢}). That is, the modulus of Y a} is
equal to that of its projection on the ray of angle ¢*.

The following theorem and its corollary provide a sort of converse
or dual of Theorem 1 and Corollary 1.1:

THEOREM 2. Let {a;} be a subsequence of {aw} for which |> a;l
=maxlea,~’ | , and let g=arg > d;. Then max F(¢)= |Zd,~| =F(s).

Proor. Let ¢ be any angle, (0=<¢=27), and {a,’ } the sequence of
those elements of {a} for which cos (¢ — ) >0. Then

F@g)= 2, Ancos(p—¢n) = D Ajcos (p — &)

cos (;—¢k)>0

=|Xalz| Xz X Arcos(p— i) = F(¢).

cos (¢—¢ ) >0

COROLLARY 2.1. In the notation of Theorem 2, {d;} is the sequence
of those elements of {ax} for which cos (¢—¢i) >0.

Proor. Taking ¢ =¢ in the inequalities of Theorem 2, we see that

2 Axcos (b —w) = A cos (b — b))
cos (¢—1)>0
In conjunction with Theorem 3 (below), this proves the assertion.

THEOREM 3. In the notation of Theorem 2, there exists no element . of
{ax} for which cos (3 —¢.) =0.
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PROOF. If there were such an element, then |Y.d;+a. >|> d;,
so that addition of @, to { d,-} , if it were not already therein contained,
or removal of it, if it were, would provide a subsequence of {ak} to
establish that |Y.d;| <maxgs |> a/|, contrary to the definition of

a;}.
THEOREM 4. p=1/7.

Proor. First,

fo F(@)dp = 23 As.

Thus max F(¢) =D 4 /m, whence, by Theorem 1, p=1/7. To show
that p =1/, consider the sequence over » of particular finite sequences
{,a1}, where ,ar= exp {kmi/(2v+1)}, (k= —2», —2v+1, - - -, 0, 1,
-+, 2y, 2v+1). By Corollary 2.1, for given » any subsequence
{,a!} of {,ai} the sum of whose elements is of maximum modulus
consists of those elements whose arguments lie in a certain sector of
aperture 7. By the symmetry of the sequence {,a:}, the midray of
such a sector must lie either on a vector ,a; or midway between two
such vectors which are adjacent. In the latter case, however, Theo-
rem 3 would be violated. Hence the former must obtain, and thus
those elements of {,a;} for which —w/2 <kw/(2v+1) <m/2 consti-
tute a subsequence the sum of whose elements is of maximum modu-
lus. Hence, if S(») denotes the general subsequence {,a/ } of {,a-k},

v

max | 2 wof [/§,Ak = cos {kr/(2v + 1)} /{2020 + 1)}

S®) i k=—v»
= 1/{2(2v + 1) sin [x/{2(2» + 1D} ]};
and, as v—, this tends monotonely to 1/x. This establishes (ii).

THEOREM 5. There exists no sequence {ay } € for which F(¢) is con-
stant.

PRrOOF. If there were such a sequence {a:} then, by Theorem 1,
for each ¢ the sequence {a}} of those elements of {a:} for which
cos (¢ —¢z) >0 would be such that ]Za}"[ =maxg lZai' I . Hence, by
Corollary 1.1 and Theorem 3, there would exist no non-zero element
of {a+}, contrary to the definition of .

THEOREM 6. Given an arbitrary sequence, finite or infinite, of pairs
(Ck, Y1), where the Yy, are real numbers and the Cy positive numbers with
D Ci< o, then ®(¢) =2 Ci|cos (¢—yu)| is not constant.
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Proor. The sequence {ak} defined thus: @zp1=Crexp(¥s),
a2 =Cy exp [i(Yx—m)], is of class ¥, and

F(¢) = D, Cicos(p—yw+ 2, Cucos(p+m— )

cos (¢—¥)>0 cos (¢—yY£)<0
=D Ci|cos (¢ — yi) | = ®(9).
The conclusion now follows from Theorem 5.

THEOREM 7. There exists no sequence {ax}e for which it is true that

maxg lZa{ l /> Ar=p.

Proor. If there were such a sequence {ak}, then, by Theorem 1,
F(¢) =pY_A; for all ¢. Hence

frlpZAk—F(¢)|d¢=f ’r{pZAk—F(tb)}dq&
=2> A, — 2D A, = 0.

By continuity, then, F(¢) =pp_ 4} for all ¢. But by Theorem 5 this
is impossible. This establishes (iii).

LeEmMMA 8.1. Let X be an aggregate of elements x of any sort, and
{fv} any sequence of functionals over X. Then sup, lim supy fx(x)
=lim supy sup. fr(x).

Proor. For each NV and for all x, fx(x) <sup,fx(x). Hence, for all x,
lim supy fa(x) <lim supxy sup, fx(x), and the conclusion follows.

REMARK. Equality in the conclusion of Lemma 8.1 is not implied
by the hypotheses. For, if we let X represent the totality of real num-
bers and define fy(1/N)=1, fy(x)=0 for x=#1/N, (N=1,2, . .),
it follows that lim supy fx(x) =0 for each x, so that sup, lim supy fx(x)
=0, whereas sup, fy(x) =1 for each N, so that lim supy sup, fx(x) =1.

THEOREM 8. Let {1} B be arbitrary. Then there exists a subsequence
{6} of {br} for which

% N
lim sup | D8] /> Bi = sup lim sup | D8/ | / 2 Bs
N 1 T N 1

Y% N
= lim sup sup | 2’8/ | / > B = lim sup max | 38| /X Ba.
N T 1 N T 1

ProoF. By Theorem 1, for each N there exists a subsequence
{bj(N)} of {bk} for which IZ’bf(N)]/leka=supT |Z’b,~’l/ > ¥B..
Let {N(»)}, (v=1, 2, - - - ), be a subsequence of {N} such that
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N(») N
lim | 3°/,b;] / 20 Bi = lim sup | X216, /3 B,
1 v 1

and such that

N (v—1) N(»)

2. Bi/ X Bi < 1/27,
1 1

where the notation ,b; represents b;™ with N = N(v). Define the sub-
sequence {57} of {4} in such a manner that its elements coincide in
order with those of {,b;} in the subscript interval (with respect to the
original sequence {4;}) N(»r—1) <k<N(») for all », (N(0)=0). Now

N (v)

N
lim sup | /0| / 32 Bx 2 limsup | 207 | / 32 Bu,
N 1 v 1

so that from the inequality
N (»)

N(v)
| 2| /> Bez | 2o44bi| /2 Br — 1/27,
1 1

it follows that

1

N v
lim sup | D6 | /X Bx = lim sup max | 2.6/ | /> Bs.
N 1 N T
But that

N N
lim sup | S| /D B < Slzl'P lim sup | 228/ | / 2 B
N 1 N

1

is obvious, and that
N N
sup lim sup | D0/ | / > Bx < lim sup max | 2’6} | /> B
T N 1 N T 1

follows from Lemma 8.1. The conclusion follows. This establishes
@iv).
LEMMA 9.1.0=p.

Proor. By Theorem 8,

N
¢ = inf max limsup | D8/ | /> B
B T N 1

N
= inf lim sup max ' > b} | /> Br = p,
B N T 1



1938] SOME THEOREMS ON SUBSEQUENCES 303

which establishes the lemma.
Consider now the sequence {b7*} defined thus: b*=ei*, (k=1,
2, - - + ), and define
N

Fy(¢) = 2 {cos (¢ — k) +|cos (6 — B) | } /2N, 0=¢ < 2r.

1
LEMMA 9.2, Limy osce Fa(¢) =0.

PrOOF. Let ¢>0 be arbitrary; let K be such that, for each ¢,
é=p(¢) +ns (mod 27) for some 74 for which | 74| <e and some integer
p(¢) for which 0=p(¢) =K; and let N be such that K/N <e. Then,

for each ¢,

N—p(¢)

| Fn(¢) — Fn(0)| = 1?1 {cos (k — ng)
+|cos(k-—n¢)—cosk—]cosk| }I’/ZN
p(¢)
+ ;{cos(¢—k)+|cos(¢—k)l }|/2N

+ i {cosk+|cosk]}’/2N<3e,

N—p(¢)+1

This establishes the lemma.
LeMMA 9.3. Limy Fa (o) = p uniformly in ¢.

ProoF. The assertion follows from Lemma 9.2 and the fact that,
for each N, f:'FN(¢>)qu=2.

THEOREM 9. o =p.

ProOF. Applying Theorem 2 to the (finite) sequence of those ele-
ments of {6} for which <N, we find that

N
m;}X | 22| / 2 B = max Fx(¢),
1

which tends to p, by Lemma 9.3. By Theorem 8 and Lemma 9.1, this
establishes the theorem, and hence also (v).

THEOREM 10. There exist an uncountably infinite number of subse-
quences {b}} of {b¥} for which

L N
lim | 28] /30 B = max limsup | D82 |/ > B¥ =p =o.
N 1 N 1
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PROOF. Let ¢’ be arbitrary, and let {5} be the sequence of those
elements of {6} for which cos (¢’ —¢7*) >0. Then, by inequalities
like those used in the proof of Theorem 2, for each N,

N N

Fu(#) <[ 28#]/ 22 B¥ < max | 36|/ 2 B¥ = max Fx(4),
1 1

and the conclusion is seen to follow from Lemma 9.3 and Theorem 8.

This establishes (vi).

TuEOREM 11. If ®x(d) EZ{VICOS (¢>—k)|/N, (0=¢=2w), then
limy ®x(¢) =2/7 uniformly in .

ProoF. As in the proof of Lemma 9.2, it can be shown that
limy coss ®x(d) =0. Also,

27
f (9)ds = 4.
0

The conclusion follows.

ReMARK. The sequence {67} could equally well have been taken
thus: bff =e®* (k=1, 2, - - - ), where § is any number incommen-
surable with .
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