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SOME THEOREMS ON SUBSEQUENCESf 

HUGH J. HAMILTON 

It is obvious that , for any real sequence for which the sum 2 of the 
moduli of its elements exists and is finite, there exists a subsequence 
such that the modulus of the sum of its elements is not less than 2 / 2 . 
The purpose of this paper is to formulate and investigate analogous 
statements for complex sequences. 

Let 21 be the class of sequences, finite or infinite, {#&} (de­
noted alternatively by A) of non-zero complex numbers for which 
]CI akI < °° > and {aj } (denoted alternatively by 5), the general sub­
sequence of {a,k} for fixed {#&}. Let 53 be the class of sequences {bk} 
(denoted alternatively by B) of non-zero complex numbers for which 
X | bk\ = °°, and {&/ } (denoted alternatively by T), the general sub­
sequence of {bk} for fixed {bk}. 

The following facts will be established: (i) Given any sequence 
{#/fe}e§ï, there then exists a subsequence \a?} for which |]Ca/*l 
= supiS | 2 j a / | . (ü) If P^inÎA maxs | X ) a / ] / ] C l a * | » t l i e n p = l / x . 
(iii) No sequence {dk}e% exists for which max s \^aj | / ]CIÖ*I ~P-
(iv) Given any sequence {&ft}e33, there exists a subsequence \bf*} 
such t h a t j 

JV JV 

limsup | E V l / E I M = suP limsup | I > / | / Z I M 
1 T N i 

N N 

= lim sup sup I 'JT/bj I / T) I bk I = lim sup max I X)'& ƒ I / 2 I J* | • 
N T i N T i 

(v) If o- = inf£ maxr lim sup# | X)'*/ I / S f I M > ^ e n cr = p. (vi)There ex­
ists a sequence {bk} eS3 for which maxr lim sup^ | ^ ' 6 / | / ^ f \bk\ =<r. 

Use will be made of abbreviations of the following sort: Ak= \ a*|, 
0fc = arg ak. For definiteness, the function "arg" will mean, throughout 
this paper, principal argument. Given any sequence {a*}e2ï, define 

F(<l>) = X) ,4* cos (<£ - 4>h) 

= Z ^ * { c o s ( * - * * ) + I cos ( * - * * ) I }/2, 0 g 0 ^ 2TT. 

t Presented to the Society, November 27, 1937. 
J The notation S ' indicates summation over precisely those elements of the sub­

sequence which occur among the elements of the original sequence summed elsewhere 
in the formula. 
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Being continuous, F{^>) attains its supremum. In what follows, to 
and including Theorem 3, {ak} will signify an arbitrary but fixed 
sequence of class §1. 

THEOREM 1. Let <£* be such that .F(0*)=max F(4>)} and let {af} 
be the sequence of those elements of {ak} for which cos (<£* — <l>k)>0. 
Then sups | 2 > / | = W ) = | I > f | . 

PROOF. Let {a/ } be any subsequence of {ak}, and define 
<t> = arg X ) a / • Then 

I Z *T | ^ E Af cos (<*>* - o*) = Fi**) ^ *(*). 

= E i4jbcos(0 — <£&) ^ 2 - 4 / c o s ( 0 - * / ) = I Z ) ^ / I-
cos(0— 0ft)>O 

This establishes (i). 

COROLLARY 1.1. In the notation of Theorem 1, 0* = arg XX*. 

PROOF. Taking {aj } s {af} in the inequalities of Theorem 1, we see 
that |X)af | =^Af cos (<£* — <£f). That is, the modulus of X/fcf is 
equal to that of its projection on the ray of angle <£*. 

The following theorem and its corollary provide a sort of converse 
or dual of Theorem 1 and Corollary 1.1: 

THEOREM 2. Let {âj} be a subsequence of {ak} for which | X X | 
= m a x , s | ^ a / | , and let <£ = arg XX*- Then max T*1 )̂ = |XX' | =F(<i>)-

PROOF. Let <t> be any angle, ( 0 ^ $ ^ 2 7 r ) , and {aj } the sequence of 
those elements of {ak} for which cos (<£ — <j>k) > 0 . Then 

p(4>) = J E Ak cos (0 — ^*) ^ ] £ 3"? cos (0 — 0j) 
cos(^-0fr)>O 

= 1 E*/ | ^1 E « / | ^ E 4* cos (*-*») = F(*). 
cos(0— 0A)>O 

COROLLARY 2.1. 7w the notation of Theorem 2, {a3-} is tóe sequence 
of those elements of {ak} for which cos (<£ —<£&) > 0 . 

PROOF. Taking <A = ^ in the inequalities of Theorem 2, we see that 

J C f̂c c o s (* "" **) = S ^? c o s ( ? "" <£?') • 
COB<0—0fc)>O 

In conjunction with Theorem 3 (below), this proves the assertion. 

THEOREM 3. In the notation of Theorem 2, there exists no element aKof 
{aK} for which cos (<£ — <j>K) — 0. 
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PROOF. If there were such an element, then |X)â,-±a«| >|X)^/ |» 
so that addition of aK to {dj}, if it were not already therein contained, 
or removal of it, if it were, would provide a subsequence of {ak} to 
establish that | $ ^ / | <maxs | ]C a / I » contrary to the definition of 

THEOREM 4. p = 1/TT. 

PROOF. First, 

f F(4>)d<t> = 2Y,Ak. 
Jo 

Thus max F(<l>) è]F^U/7r, whence, by Theorem 1, p ^ l / x . To show 
that p ^ I / T , consider the sequence over v of particular finite sequences 
{vak), where vak = exp {kwi/(2v + l)}, (k= —2v, — 2P + 1, • • • , 0 , 1, 
• • • , 2v> 2v + l). By Corollary 2.1, for given v any subsequence 

{vaf } of {vak} the sum of whose elements is of maximum modulus 
consists of those elements whose arguments lie in a certain sector of 
aperture T. By the symmetry of the sequence {vak}, the midray of 
such a sector must lie either on a vector vak or midway between two 
such vectors which are adjacent. In the latter case, however, Theo­
rem 3 would be violated. Hence the former must obtain, and thus 
those elements of {vak} for which —w/2<kw/(2v + l) <w/2 consti­
tute a subsequence the sum of whose elements is of maximum modu­
lus. Hence, if S(v) denotes the general subsequence {vaj } of {9ak}y 

max | £ , a / | / £ M = Z cos {kr/(2p + l ) } / { 2 ( 2 ^ + 1)} 

= l / { 2 ( 2 ^ + l ) s in [ T T / { 2 ( 2 * > + 1 ) } ] } ; 

and, as *>—>oo, this tends monotonely to l/V. This establishes (ii). 

THEOREM 5. There exists no sequence {ak}e% for which F(<f>) is con­
stant. 

PROOF. If there were such a sequence {ak} then, by Theorem 1, 
for each </> the sequence {af} of those elements of {ak} for which 
cos (0 — <j>k) > 0 would be such that | £ a f | = m a x s E ^ / | . Hence, by 
Corollary 1.1 and Theorem 3, there would exist no non-zero element 
of {ak}> contrary to the definition of 21. 

THEOREM 6. Given an arbitrary sequence, finite or infinite, of pairs 
(Ck, \[/k), where the \f/k are real numbers and the Ck positive numbers with 
^2Ck < oo , then <£(</>) =X)C&[ Cos (<t>—ypk) \ is not constant. 
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PROOF. The sequence {ak} defined thus: a2fc-i = C&exp(^&), 
atk = Ck exp [i(̂ jfc —IT)] , is of class 3Ï, and 

F(4>) = ]E Ck cos (^ — ^*) + 23 Ck cos (0 + 7T — ypk) 
cos(0—^fc)>0 cos(</>- ̂ fc)<0 

= Z C* | cos (^ - ^*) | = $(</>). 

The conclusion now follows from Theorem 5. 

THEOREM 7. There exists no sequence [ak\e%for which it is true that 
maxs | £ a / 1 / 2 - 4 * = ^ . 

PROOF. If there were such a sequence {a&}, then, by Theorem 1, 
^(0) ^ P Z ) < ^ * for all <j>. Hence 

f | P L ^ * - - P ( * ) I ^ = f '{PZ>*-^(*)}<** 

= 2^Ak- 2Y,Ak = 0. 

By continuity, then, F(4>) = p£JAk for all <j>. But by Theorem 5 this 
is impossible. This establishes (iii). 

LEMMA 8.1. Let X be an aggregate of elements x of any sort, and 
{ƒJNT } any sequence of functionals over X. Then sup» lim supiv ƒ#(#) 
^ l im supjv sup* ƒ#(#). 

PROOF. For each N and for all x,/w(#) ^sup* ƒ#(#). Hence, for all x, 
lim supiv/jNr(x) ^ l im supjy sup* ƒ#(#), and the conclusion follows. 

REMARK. Equality in the conclusion of Lemma 8.1 is not implied 
by the hypotheses. For, if we let X represent the totality of real num­
bers and define /JNr(l/iV) = l, fN(x)=0 for x&l/N, (iV = l, 2, • • • ), 
it follows that lim supjv ƒ#(#) = 0 for each x, so that sup* lim supNfN(x) 
= 0, whereas supxfN(x) = 1 for each N, so that lim supN sup* ƒ#(#) = 1. 

THEOREM 8. Let {bk} e$8 be arbitrary. Then there exists a subsequence 
{bf} of {bk} for which 

N N 

lim sup I S ' J f I / X ) B ^ = sup lim sup I X)'*/ | / £ •#* 
N i T N i 

N N 

= lim sup sup I "JT/bj I / ]£.£*. = lim sup max I ^'bj I / ]C •#*• 
N T i N T i 

PROOF. By Theorem 1, for each N there exists a subsequence 
{&/*>} of {&*} for which \Zfb3'

(N)\/ZiBk = supT | Z ' & / | / Z f £ * . 
Let {N(v)}, (v = ly 2, • • • ), be a subsequence of {N} such that 
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Hm | £ ƒ , i , | / E 5 , = limsup | E/^ ( i N° | / ! > * , 
1 N i 

and such that 
JV(v-l) N(P) 

E V É 5 » < l/2'+1 , 
1 1 

where the notation „&,- represents &j(isr) with N = N(v). Define the sub­
sequence {&,*} of {bk} in such a manner that its elements coincide in 
order with those of {„&ƒ} in the subscript interval (with respect to the 
original sequence {6*}) N(v-l)<k£N(v) for all v% (if(O)sO). Now 

JV N(v) 

lim sup | Y,'K | / E 5* ^ lim sup | E '£ * I / E 5*, 
tf i ^ i 

so that from the inequality 
N(v) N(P) 

I E V l / E s » ^ I E / ^ - l / E B » - i/2% 
l l 

it follows that 

lim sup | E ^ f I / E Bk = n m S U P m a x I E ' * / I / E •#*• 
N i N T i 

But that 
JV JV 

lim sup | E'&f I / E Bk ^ sup lim sup | E ' 6 / I / E •#* 
jv i r jv i 

is obvious, and that 
JV JV 

sup lim sup I E ^ / I / E Bk ^ lim sup max I E ' ^ / I / E -#* 
T N i N T i 

follows from Lemma 8.1. The conclusion follows. This establishes 
(iv). 

LEMMA 9.1. <r^ p. 

PROOF. By Theorem 8, 
JV 

a = inf max lim sup | E ' ^ / I / E -£* 
Î3 r jv i 

JV 

= inf lim sup max | E ' ^ / I / E •#* = P> 
5 JV T i 
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which establishes the lemma. 
Consider now the sequence {&&*} defined thus: b^^eik

t (& = 1, 
2, • • • ), and define 

N 

FN(4>) = Z {cos (0 - *) + | cos (« - *) | }/2JV, 0 ^ 0 ^ 2TT. 
l 

LEMMA 9.2. Limjy osc<̂  i*V(<£) = 0. 

PROOF. Let e > 0 be arbitrary; let K be such that, for each </>, 
0 = ^ ( 0 ) + T ; 0 (mod 27r) for some rj<f> for which | rj<i>\ <e and some integer 
p((/)) for which 0^£(</>) g # ; and let N be such that K/N<e. Then, 
for each 0, 

| FN(4>) - ^ ( 0 ) | ^ 

N-PW 

X) { c o s ( £ - r ç 0 ) 

+ | COS (k — T/̂ ) — COS k — I COS k J } I 

+ 

+ 

P(*) 

2 { c o s ( 0 - *) + | c o s f a - k)\ } 

I IN 

I IN 

Z {cos k + I cos k I } /2JV < 3e. 

This establishes the lemma. 

LEMMA 9.3. Linijv FN(CJ>) = p uniformly in <j>. 

PROOF. The assertion follows from Lemma 9.2 and the fact that, 
for each N, f0*FN(<t>)d<l> = 2. 

THEOREM 9. <r = p. 

PROOF. Applying Theorem 2 to the (finite) sequence of those ele­
ments of {bj?} for which k ^ N, we find that 

max I £ > ƒ " I / Z Bf = max Z^fo), 
T 1 * 

which tends to p, by Lemma 9.3. By Theorem 8 and Lemma 9.1, this 
establishes the theorem, and hence also (v). 

THEOREM 10. There exist an uncountably infinite number of subse­
quences {If} of {bj?} for which 

lim I Y/U l/E*** = max lims»P I E V | / E W = P = <r. 
# 1 r iv 1 
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PROOF. Let <j>' be arbitrary, and let {5*} be the sequence of those 
elements of {b*} for which cos (<£' — <£/?) > 0 . Then, by inequalities 
like those used in the proof of Theorem 2, for each Nt 

FNW) ^ | UW I / Z Bk* S max | I > f ' I / Z Bf = max FN(<j>), 
1 T i * 

and the conclusion is seen to follow from Lemma 9.3 and Theorem 8. 
This establishes (vi). 

THEOREM 11. If < M 0 ) = X ) f I cos (0 -* ) | / JV , (0^</>^27r), tóen 
limjv *iv(</>) = 2 / x uniformly in <£. 

PROOF. AS in the proof of Lemma 9.2, it can be shown that 
limtf cos</> *#(<£) = 0 . Also, 

<Mtf>)<^ = 4 . 
o 

The conclusion follows. 

REMARK. The sequence {&&*} could equally well have been taken 
thus: b£=ei8k, (& = 1, 2, • • • ), where ô is any number incommen­
surable With 7T. 

POMONA COLLEGE 


