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A MULTIPLIER RULE IN ABSTRACT SPACES* 

HERMAN H. GOLDSTINE 

The Lagrange multiplier rule has been generalized to certain non-
calculus of variations problems by Graves,f Hahn,J and the author.§ 
Moreover a very general problem was formulated by L. A. Luster-
nik.|| However his work seems to rest upon a theorem which is stated 
without proof and which the author is unable to verify. There are 
also certain other difficulties with his proof. The problem herein pre
sented is so formulated that the problem of Bolza in the calculus of 
variations, the problems treated by Graves, Hahn, and the author, 
and the problem of minimizing a functional defined upon an arbitrary 
Banach space subject to very general numerically-valued side condi
tions, and numerous other examples are included as special cases. 

The proof proceeds along lines which are essentially generalizations 
of the methods of the calculus of variations. This demonstration is 
made possible by the very powerful implicit function theorems of 
Hildebrandt and Graves^ and yields analogs of the transversality 
condition and of the Euler-Lagrange equations. Some instances which 
explain the number of linear spaces involved are given in the conclud
ing section. 

1. Definitions and assumptions. In order to obtain our statement 
and proof of the multiplier rule it is convenient to refer to five normed 
linear spaces 9K, 9Î, 36, U, 33, of which ÜD?, U, and 33 are assumed to 
be complete. I t is further supposed that 9Wo, 9to, and Xo are regions 
of their respective spaces. We shall then be concerned with the fol
lowing basis: 

* Presented to the Society, September 10, 1937. 
t A transformation of the problem of Lagrange in the calculus of variations, Trans

actions of this Society, vol. 35 (1933), pp. 675-682. 
I Ueber die Lagrange'sche Multiplikatorenmethode, Sitzungsberichte der Akademie 

Wien, vol. 131 (1922), pp. 531-550. 
§ The minima of functionals with associated side conditions, Duke Mathematical 

Journal, vol. 3 (1937), pp. 418-425. 
|| Sur les extrêmes relatifs des fonctionnelles (in Russian), Recueil Mathématique 

de la Société Mathématique de Moscou, vol. 41 (1934), pp. 390-401. 
Tf See L. M. Graves, Topics in the functional calculus, this Bulletin, vol. 31 (1935), 

pp. 641-662; Riemann integration and Taylor's theorem in general analysis-, Implicit 
functions and differential equations in general analysis-, and T. H. Hildebrandt and 
L. M. Graves, Implicit functions and their differentials in general analysis. The last 
three articles cited appear in the Transactions of this Society, vol. 29 (1927), pp. 163-
177, 514-552, and 127-153, respectively. In the sequel these papers will be referred 
to as papers I to IV, respectively. 
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A. ƒ and \f/kj (k = 1, • • • , q), where q is an a r b i t r a r y integer, a re 
real-valued functions defined on the composi te* (Xo, 9Ko) of Xo and 
9ft o, each of which has a first differential a t some fixed poin t (xo, /z0). 
Moreover t he functionals \pky (k = l, • • • , q), vanish a t th is po in t 
(xo, MO). 

B. w = 0i(#o, Mo, VQ) is an opera t ion of class C' defined on 
(Xo, 9ïîo, 9to), a n d hav ing its functional values in U; and v0 = n(xo, MO) 
is defined over (Xo, SDto), has its va lues in 9Î0, is of class C", and is such 
t h a t 0 i [#o, Mo, w(xo, M O ) ] = O W , t he zero e lement in the space U. (An
alogous no ta t ions will be used for the zero points in the var ious spaces 
t rea ted . ) 

C. T h e r e is an opera t ion z/ = 02(ffo, Mo, vo) of class C", which is de
fined on a ne ighborhood of t he poin t (xo, MO, PO), where Vo = n(xo, /z0), 
and has its functional va lues in 33, such t h a t t he l inear and cont inu
ous function of M, (^M0I(#O, MO, ^O; M), d^ixo, MO, vo', M))> h a s a l inear 
con t inuous reciprocal a t (xo, Mo, ^o) = (#o, Mo, Po). 

D . T h e functional ƒ has a m i n i m u m a t (xo, /Zo) in t he class of po in ts 
in (Xo, 5D?o) which satisfy t he equa t ions 

(j>i[oco, MO, n(x0, MO)] = 0 t t , 

^k(x0} MO) = 0, £ = 1, • • • , q. 

In order to simplify t h e no ta t ion t he e lement v of 33 will be used 
to des ignate (£2(^0, Mo, vo)'y $«(#, M, *0 to indicate dcj)a(xo, /Z0, ^0; #, M, *0, 
(<2 = 1, 2 ) ; a n d N(x, M) to connote dn(x0, juL0; x, ju). 

2. The imbedding theorem. I t is of p a r a m o u n t impor tance for our 
purposes to show t h a t t he minimizing e lement (xQ, /Z0) is a l imit po in t 
of e lements (#o, Mo) which satisfy t he equa t ion 

0 i [#o, Mo, n(xo, Mo) ] = 0W. 

T o show t h a t t h e e lement (x0, MO) is so imbedded it is convenien t 
first to d e m o n s t r a t e several l emmas . 

L E M M A 2 .1 . In a sufficiently small neighborhood of jXo the equations 

</>i(x0, Mo, VQ) = u, 

02(^0, M0, *>o) = V 

have, for each (x0, vo, u, v) in a neighborhood of (#0, vo, 0U, v), a unique 
solution, fAo = MI(XQJ VO, U, V), of class C'. 

Thi s resul t follows a t once from the implici t function theorems 

* See paper IV for the definitions of terms such as composite, neighborhood, 
region, differential. 
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mentioned above,* because of assumptions C and the fact that 
(Mo, XO, VO, U, v) = (MO, XQ, VO, 0U, V) is an initial solution of these equa
tions. 

COROLLARY 2.2. For each (x, v, U, V) the equations 
$i(x, ix,v) = U, 

have a unique continuous solution fx = M<z(x, v, U, V) which is equal to 
dMi(x0, Vo, 0U, v; x, v, V, V). 

The existence and unicity of the solution is an immediate conse
quence of assumption C\ and the last assertion in the corollary can be 
established by setting xo = xo+ax, vo = Vo+av, u = al/,v = v+aV, and 
Mo = Mi(xo, vo, u, v) in equations (2.1) and differentiating the resulting 
identities in a at a = 0. 

Then to obtain the desired imbedding theorems we make a final 
assumption. 

E. Either the function M\, mentioned above, is independent of Vo, 
or the transformation 

lx — dvMi[xo, Vo, Ou, v; d^Xo, MOÎM)] 

has a linear continuous reciprocal. 
I t follows readily from Lemma 2.1 that if M\ is independent of 

vo and if M(x0, u, v) is defined to be Mi(xo, vo, u, v), then the functions 
<j>\[xo, M(x0, u, v), vo], 02[#o, M(xo, u, v), vo] are independent of VQ, 
at least for (x0, vo, u, v) sufficiently near to (xo, Vo, 0U, v). 

THEOREM 1. In a sufficiently small neighborhood of MO the equations 

<£i[̂ o, Mo, n(x0, Mo)] = u, 

02[XQ, MO, n(xQi MO)] = v 

possess a unique solution fjio = M(xo, u, v) of class C' for (xo, u, v) in 
some neighborhood of (x0, 0U, v). 

From what has been said above it suffices to consider the case 
where Mi is not independent of VQ. Hence the equation 

Mo = Mi[x0, n(x0, MO), «, v] 

has a solution MO = M(xo, u, v) which is effective in the theorem. 
Similarly a consideration of the equation 

M = dMi[xo, Vo, 0Uy v\ x, N(x, M), U, V] 

* See paper I, p. 65, and paper IV, p. 150. 
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yields the following corollary: 

COROLLARY 2.3. For each (x, U, V) the equations 

$i [s , /x, N(x, n)] = U, 

$2[*, /x, N(x, fi)] = V 

have a unique continuous solution JJL = MS(X, U, V)=dM(xQ, 0W, v; 
x, U, V). 

COROLLARY 2.4. Let s be an arbitrary integer, (#1, • • • , xs) a set 
of elements of 36, and (/xi, • • - , /xs) a set of elements of 5DÎ satisfying 
$i[xy /x, Nix, /x)] =0M. Then there are functions xo(b) and fXo(b) of class 
C' for values of b — (&i, • • • , bs) sufficiently near to (0, • • • , 0), which 
satisfy the equation 

<l>i[%o, Mo, n(x0, ju0)] = 0M, 

Xo(0) =#0, Mo(0) =/xo, ö^J dxo(0)/dbi = Xi, d/xo(0)/3&»-=/z»/or 1 ̂ g i^s . 

Define F* to be *2^t , M*> ^(^*, M*0]> ( ^ l » ' * ' » <0> *<>(&) 
= Xo(6i, • • • , bs)=xo+biXi, and /x0(&) to be AT[x0(ô), 0W, Â+ô»F»], 
where a repeated index indicates a sum. Then the first part of the 
corollary is obvious, and the latter part is an easy consequence of 
corollary 2.3. 

3. The multiplier rule. The usual mode of proof utilized in the 
calculus of variations suffices to establish the following lemma : 

LEMMA 3.1. There are constants /0, ci, • • • , cq, not all zero, such 
that 

g(x, /x) = lodf(x0y /x0; x, IJL) + ckd\l/k(xo, /x0; x, n) = 0 

for every (x, JJL) satisfying the equation 

&i[x, JJL, N(x, JJL)] = 0 t t. 

To simplify the succeeding demonstration we shall define gi(x) 
and g2(p) to be lodxf(xQ, j20; x)+ckd-\f/k(xo, /z0; x) and hdj{x^ jû0; M) 
+Cid^k{xQ, MO; M)» respectively. It is then obvious that g(x, JJL) =gi(x) 
+ ^ 2 ( M ) and that g± and g2 are linear continuous functional on Xand 
SDÎ, respectively. 

LEMMA 3.2. The functions *i[#, Mz(x, U, F)], N[x, Ms(x, U, F)]> 
and g [xj Ms(x, U, V) ] are independent of x and F; the latter is a linear 
continuous functional J on U ; and for every x 

(3.1) gl(x) + g2[M3(x, Ou, 0,)] = 0. 
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It follows at once from Corollary 2.3 that $1 is independent of x 
and V. Hence we have $i[x, ft, N(x, M ) ] = 0 M , where x = Xi — x2, and 
M = M%(x, 0U, V\— V2). Consequently we have, by Lemma 3.1, g(x, M) 
= 0 for every x\, x2, V\, and V2; this proves the rest of the lemma, 
since M8(xly U, Vi)-M3(x2, U, V2) =M3(xi~x2, 0„, Vi-V2). 

To complete the proof of the multiplier rule we shall now prove 
that there is a linear continuous operation u = P(fx) on SCXÎ to U such 
that g2(fji) =J[P(JJL)] for every /x- To this end define P(AO to be 
*i[0*, At, N(0X, At)] and QQi) to be $2[0X, /x, N(0X, /*)]• Therefore, by 
Corollary 2.3, /JL — MS[0X, P(AOJ Q ( M ) ] ; as a consequence it is evident 
that g2Qi) = g2(M8[0x, PQi), QQi)]) which, by Lemma 3.2, is / [? ( /*) ] # 

THEOREM 2. There exist constants l0, cly • • • , cq, not all zero, and 
a linear, continuous, and real-valued functional J on M such that 

(1) lodpfixo, /x0; AO + Ckdrfkixo, MO; M) ~ J($i[0*, M, N(0X, M)]) = 0 

/or every JJL in 3JÎ, and 

(2) hdxf(xo, MO; x) + ckdx\f/k(xo, Mo; a) — / ( $ i [ a , 0M, N(x, 0M)]) = 0 

/or every xinH. 

From the previous discussion it is evident that 

£2(M) = hdpf(xo, MO; M) + Ckdrfkixo, MO; M) = ^ [ P ( M ) ] 

and that P(/x) is ^[O*, JJL, N(0X, IJL)]. Equation (2), the "transversality 
condition," follows from equation (3.1). For, 

g2[Ms(x, 0„, 0,)] = J(P[Mz(x, 0M, 0,)]). 

Then making use, on the one hand, of the definitions of P and <£i, and 
on the other hand of Corollary 2.3, we obtain the desired conclusion. 

4. Instances of the theory. We shall illustrate the generality of 
our theory by working out two special cases, the minima of functions 
of several variables and the problem of Bolza in the calculus of varia
tions. However the theory also includes the situations treated by 
Hahn, Graves, and the author, as well as many others. 

Consider first the problem of minimizing a real-valued function 
g{x\, - • • ,xm) of m real variables in the class of points Xo = (#i, • • -,xm) 
satisfying equations hk(xo) = 0, (k = l, • • • , q). I t is assumed that g 
has a minimum at a point x0 in this class and that g and hk have 
first differentials at this point. Then to indicate the applicability 
of our theory to this case we choose the sets SD?, Sft, 9ft 0, 5fto, U, 
and 33 to be equal to the set of real numbers, 36 to be the ra-di-
mensional euclidean space, and ïo to be the region of definition of 
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the functions g and Ai, • • • , hq. We then make the following defini
tions: \//k(xQ, JULo) = hk(x0), 0 = 1, • • • , q), f(xo, Mo)=gOo), n(x0, Mo)=0, 
0i(#o, Mo, ^o)=Mo, and /z0 = 0. Then it is clear that f(x0, JJLQ) is a mini
mum at (xo, MO) in the class of all points (xo, Mo) in the region which 
satisfy 

*Afc(#o, Mo) = 0, * = 1, • • • , q, 

Mo = 0, 

and all previous assumptions are satisfied. 
Our multiplier rule then implies the existence of constants 

/o, £i, • • • , cqi not all zero, and a constant e such that 

logxi(xo)dXi + ckhkxi(xo)dXi = 0, edix = 0 

for every d#i, • • • , dxm and every JM; therefore we have e = 0 and 

logxi(xo) + ckhXi(x0) = 0, i = 1, • • • , m, 

which is the familiar form of the multiplier rule for this problem. 
The problem of minimizing a function ƒ on a region X0 of a normed 
linear space in the class of points satisfying functional equations 
4/k(x0)=0, (& = 1, • • • , q), can be treated in precisely the manner 
indicated above. 

Let us turn our attention to the problem of Bolza in the calculus 
of variations, where, for simplicity, we shall suppose that the admissi
ble arcs are of class C'. Here we are given an arc yi(x), • • • , y8(x), 
(ôci^x^x2)> which minimizes a functional 

h[x, y(x), y'(x)]dx 
xx 

in the class of admissible arcs which satisfy certain side conditions 

<t>«[x, y(x)> / ( * ) ] = 0 , a = 1, • • • , r < s, 

and end conditions 

^k[xi9 y(x{), x2, y(x2)] = 0, k = 1, • • • , q. 

For our purposes it is sufficient to restrict attention to the 
class Sfto of all admissible sets of functions (yi(x), • • • , y8(x)), 
(xi — e^x^^+e), where e is some fixed positive constant. The class 
which is composed of all sets (y{ ( # ) , • • • , y I (x)) of derivatives of an 
element vo=(yi(x), • • • , ys(x)) is 9K0. Then if the transformation 

(4.1) yi(x) = yi(x0+ ryl(t)dt 
J xi 
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is performed upon the functionals I and \f/k, they become functionals 
/(x0 , Mo) and ^ ( x o , Mo) of x0 = (xi, x2, y(%i)), Mo = (:y'). Thus ïo is the 
set of all (xi, x2, you • • • » 3>o«), where |xi — Xi| <£, |x2 —x2| <£, and 
(3>oi, • • • , 3>o8) is the value of an admissible set at x = xi. 

To complete our transformation of the problem of Bolza we define 
</>i(xo, Mo, vo) to be the set of m functions 

(j)l[x, Vo(x), M o ( x ) ] , • • • , <t>m[%, Vo(%), M o ( ^ ) ] 

and n(xo, Mo) to be the set of s functions of (xo, Mo) which appear in 
the right members of equations (4.1). I t is then a simple matter 
to verify assumptions A through D of §1, if it is assumed that 
the matrix <t>ayi* of partial derivatives has rank m along the minimiz
ing arc. Assumption E can be verified without difficulty by making 
use of the theory of Vol terra integral equations. 

The functional J appearing in our multiplier rule can be shown* to 
be representable as 

— I ua(x)\a(x)dx. 
J ~xl 

Now, if we define F to be /o^+Xa</>«, identity (1) of Theorem 2 
yields the following equations: 

FVi(x)dx + l0(gVil + gVi2) + ck(\l/kVil + fkVii) = 0, 

( - l)bF(xb) + h[gn + gylhyl{xh)] + ck[ypkxh + ^kyihyi{xh)] = 0, 

6 = 1,2; 

moreover identity (2) becomes 

Fy.Sfidt + l0gyi2 + Ck\f/kyl2 = 0. 

By very obvious manipulations these equations can be put into the 
more familiar form 

[(F - ylFyi,)dx + FVi>dyi]] + hdg + ckd^k = 0, 

FVi> = I FVldx + di9 

which is the multiplier rule for the problem of Bolza. 

T H E UNIVERSITY OF CHICAGO 

* See Hahn, loc. cit., pp. 544-546. 


