ON THE n TH DERIVATIVE OF $f(x)^{*}$

H. S. WALL

Let $y_{1}, y_{2}, y_{3}, \cdots$ be defined recursively as follows: y_{1} is the logarithmic derivative of a function $y=f(x)$, and $y_{\nu}=D_{x} y_{\nu-1},(\nu=2,3$, $4, \cdots)$. Then the successive derivatives $y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}, \cdots$ of y with respect to x are polynomials in y and the y_{ν}. In fact, $y^{\prime}=y y_{1}, y^{\prime \prime}$ $=y\left(y_{2}+y_{1}^{2}\right), y^{\prime \prime \prime}=y\left(y_{3}+3 y_{1} y_{2}+y_{1}^{3}\right)$, and

$$
\begin{equation*}
y^{(n)}=y \sum A_{\nu_{1} \nu_{2}}^{(n)} \cdots \nu_{n} y_{1}^{\nu_{1}} y_{2}^{\nu_{2}} \cdots y_{n}^{\nu_{n}}, \tag{1}
\end{equation*}
$$

where $A_{\nu_{1} \nu_{2} \cdots \nu_{n}}^{(n)}$ is a positive integer and the summation is taken for all non-negative integral solutions $\nu_{1}, \nu_{2}, \nu_{3}, \cdots, \nu_{n}$ of the equation

$$
\begin{equation*}
\nu_{1}+2 \nu_{2}+3 \nu_{3}+\cdots+n \nu_{n}=n . \tag{2}
\end{equation*}
$$

This statement may readily be proved by mathematical induction. The principal object of the present note is to prove the following theorem:

Theorem. The integer $A_{\nu_{1} \nu_{2} \cdots \nu_{n}}^{(n)}$ in (1) is equal to the number of ways that n different objects can be placed in compartments, one in each of ν_{1} compartments, two in each of ν_{2} compartments, three in each of ν_{3} compartments, $\cdot \cdot$, without regard to the order of arrangement of the compartments.

1. Generalized binomial coefficients. Let $k, m, n,(k n \leqq m)$, be positive integers, and denote by $C_{m, n}^{(k)}$ the number of ways that $k n$ objects can be selected from m objects and placed in n compartments, k in each compartment, where no account is taken of the order of arrangement of the compartments. Thus $C_{m, n}^{(1)}$ is the binomial coefficient $C_{m, n}=m!/[n!(m-n)!]$. We have

$$
n!\cdot C_{m, n}^{(k)}=C_{m, k n} \cdot\left(C_{k n, k} \cdot C_{k(n-1), k} \cdot \cdots \cdot C_{k, k}\right),
$$

or

$$
\begin{equation*}
C_{m, n}^{(k)}=m!/\left[n!(m-k n)!(k!)^{n}\right] . \tag{3}
\end{equation*}
$$

This has meaning if $m \geqq k n$. For special 0 values of the indices we shall consider $C_{m, n}^{(k)}$ to be defined by (3) by taking $0!=1$. Thus if $k \geqq 0, m \geqq 0$, we have $C_{m, 0}^{(k)}=1$.

[^0]If (2) holds, it will be seen that

$$
\begin{equation*}
C_{k_{1}, \nu_{1}}^{(1)} \cdot C_{k_{2}, \nu_{2}}^{(2)} \cdots \cdot C_{k_{n}, \nu_{n}}^{(n)}=\frac{n!}{\nu_{1}!\nu_{2}!\cdots \nu_{n}!(1!)^{\nu_{1}}(2!)^{\nu_{2}} \cdots(n!)^{\nu_{n}}}, \tag{4}
\end{equation*}
$$

where $k_{1}=n, k_{2}=n-\nu_{1}, k_{3}=n-\nu_{1}-2 \nu_{2}, \cdots$ We are to prove that this is the value of $A_{\nu_{1} \nu_{2} \cdots \nu_{n}}^{(n)}$ in (1). For the proof we need the following identities which will be seen to hold for all values of m, n, k for which the symbols involved have been defined:

$$
\begin{gather*}
C_{m, n}^{(k+1)}=C_{m-1, n}^{(k+1)}+C_{m-1,1}^{(k)} \cdot C_{m-k-1, n-1}^{(k+1)}, \tag{5}\\
(n+1) \cdot C_{m, n+1}^{(k)}=C_{m, n}^{(k)} \cdot C_{m-k n, 1}^{(k)} \tag{6}
\end{gather*}
$$

Let it be remarked in passing that if $P_{n, k}=C_{n, 0}^{(k)}+C_{n, 1}^{(k)} x+C_{n, 2}^{(k)} x^{2}$ $+\cdots$, then from (5) it follows that $P_{n, k}=P_{n-1, k}+C_{n-1, k-1} x P_{n-k, k}$. Also $P_{n, k}^{\prime}=C_{n, k} P_{n-k, k}$.
2. Derivation of the formula for $A_{\nu_{1} \nu_{2} \cdots \nu_{n}}^{(n)}$. Denote the sum in (1) by S_{n}, and write S_{n} as a polynomial in $y_{1}, S_{n}=\sum_{\nu=0}^{n} S_{n, \nu}^{(1)} y_{1}{ }^{\nu}$, where $S_{n, \nu}^{(1)}$ is independent of y_{1}. We begin by showing that

$$
\begin{equation*}
S_{i, j}^{(1)}=C_{i, j}^{(1)} S_{i-j, 0}^{(1)}, \quad 0 \leqq j \leqq i \tag{7}
\end{equation*}
$$

We use induction on the subscript difference $i-j=k$. From the relation $y S_{n}=D_{x}\left[y S_{n-1}\right]$ it follows that

$$
\begin{align*}
S_{n, \nu}^{(1)}=S_{n-1, \nu-1}^{(1)}+(1+\nu) y_{2} S_{n-1, \nu+1}^{(1)}+ & D_{x} S_{n-1, \nu}^{(1)}, \tag{8}\\
& \nu=0,1,2, \cdots, n
\end{align*}
$$

with the agreement that $S_{i, j}=0$ if $j<0$ or $j>i$. Assuming that (7) holds for $k<q$ we shall prove that it holds for $k=q$. Accordingly, we choose $n, \nu,(0 \leqq \nu<n)$, in (8) so that $n-\nu=q$. Then, by our assumption, (8) may be written in the form

Replace n by $n-\nu$, and ν by 0 in (8), and eliminate $D_{x} S_{n-\nu-1,0}^{(1)}$ in (9). The result, by (6), is

$$
\begin{equation*}
S_{n, \nu}^{(1)}=S_{n-1, \nu-1}^{(1)}+C_{n-1, \nu}^{(1)} S_{n-\nu, 0}^{(1)} . \tag{10}
\end{equation*}
$$

Hence

$$
S_{n, \nu}^{(1)}=\sum_{i=0}^{\nu}\left[S_{n-i, \nu-i}^{(1)}-S_{n-i-1, \nu-i-1}^{(1)}\right]=\left[\sum_{i=0}^{\nu} C_{n-i-1, \nu-i}^{(1)}\right] S_{n-\nu, 0}^{(1)} ;
$$

or, by (5) with $k=0, S_{n, \nu}^{(1)}=C_{n, \nu}^{(1)} S_{n-\nu, 0}$, as was to be proved.
We next put

$$
S_{m, 0}^{(p-1)}=\sum_{\nu=0}^{[m / p]} S_{m, \nu}^{(p)} y_{p}^{\nu}, \quad p=2,3,4, \cdots
$$

Then the formulas

$$
\begin{gather*}
S_{m, \nu}^{(p)}=C_{m, \nu}^{(p)} S_{m-p \nu, 0}^{(p)}, \tag{11}\\
S_{m, \nu}^{(p)}=C_{m-1,1}^{(p-1)} S_{m-p, \nu-1}^{(p)}+(1+\nu) y_{p+1} S_{m-1, \nu+1}^{(p)}+D_{x} S_{m-1, \nu}^{(p)} \tag{12}
\end{gather*}
$$

hold for $p=1$. Assuming that they hold for $p<k, k>1$, we may then prove them for $p=k$. To do this, put $\nu=0$ and $p=k-1$ in (12), and equate coefficients of like powers of y_{k}. The result is the equation (12) with $p=k$. Thus (12) is true when $p=k$, and in particular $S_{k v, v}^{(k)}$ $=C_{k \nu-1,1}^{(k-1)} S_{k(\nu-1), \nu-1}^{(k)}$. Hence by (5) we find that $S_{k \nu, \nu}^{(k)}=C_{k \nu, \nu}^{(k)} S_{0,0}^{(k)}$; so that (11) holds for $p=k$ provided $m-k \nu=0$. The proof of (11) for $p=k$ may now be carried out along the lines of the proof of (7), with induction, in this case, on the difference $m-k \nu$.

After (11) has been proved it follows at once by (4) that

$$
\begin{equation*}
A_{\nu_{1} \nu_{2}}^{(n)} \cdots \nu_{n}=\frac{n!}{\nu_{1}!\nu_{2}!\cdots \nu_{n}!(1!)^{\nu_{1}}(2!)^{\nu_{2}} \cdots(n!)^{\nu_{n}}} . \tag{13}
\end{equation*}
$$

3. Application. In conclusion I shall give examples to illustrate the application of the foregoing result.

Example 1. Let $a_{n, k}$ denote the number of ways that n different objects can be distributed among k compartments, where no account is taken of the order of arrangement of the compartments, and at least one object is placed in each compartment. Then elementary considerations will show that $a_{n, k}=k a_{n-1, k}+a_{n-1, k-1}$. Put

$$
y=e^{t e x}=e^{t} \sum_{\nu=0}^{\infty} L_{\nu}(t) x^{\nu} / \nu!
$$

Then by (1) we find that $L_{n}(t)=a_{n, 1} t+a_{n, 2} t^{2}+\cdots+a_{n, n} t^{n}$.
Put $g_{k}(y)=\sum_{\nu=0}^{\infty} a_{k+\nu, k} y t$. It follows that $g_{1}(y)=1 /(1-y)$, $g_{k}(y)=g_{k-1}(y) /(1-k y),(k=2,3,4, \cdots)$, or $g_{k}(y)=1 /[(1-y)(1-2 y)$
$\cdots(1-k y)]$. Hence $L_{n}(1)$, the number of ways that n different ob-
jects can be distributed among n or fewer compartments, is the coefficient of y^{n} in the power series $P(y)$ for the function

$$
\frac{y}{(1-y)}+\frac{y^{2}}{(1-y)(1-2 y)}+\cdots+\frac{y^{m}}{(1-y)(1-2 y) \cdots(1-m y)}
$$

where $m \geqq n$. The number $L_{n}(1)$ is also the coefficient of $x^{n} / n!$ in the power series for the function $e^{\left(e^{x}-1\right)}$.

The $a_{n, k}$ are given explicitly by the formula

$$
a_{n, k}=\frac{(-1)^{k+1}}{k!} \sum_{\nu=0}^{k} C_{k, \nu}(-1)^{\nu+1} \nu^{n} .
$$

Example 2. Put $y=(1+x)^{-t}$ in (1) and then set $x=0$. There results this identity:

$$
\begin{align*}
& \frac{t(t+1)(t+2) \cdots(t+n-1)}{n!} \tag{14}\\
& \quad=\sum \frac{t^{\nu_{1+}+\nu_{2}+\cdots+\nu_{n}}}{\left(1 \cdot 2 \cdot \cdots \cdot \nu_{1}\right)\left(2 \cdot 4 \cdot \cdots \cdot 2 \nu_{2}\right) \cdots\left(n \cdot 2 n \cdot \cdots \cdot n \nu_{n}\right)}
\end{align*}
$$

where the summation is taken as in (1). On putting $t=1$ in (14) we obtain the following theorem:*

Theorem. Form a partition of n by taking at most one integer from each of the progressions 1, 2, 3, $\cdots ; 2,4,6, \cdots ; 3,6,9, \cdots ; \cdots$. Multiply together the terms of each progression up to and including the integer chosen. Let the products so formed be a, b, c, \cdots. Then $\sum[1 /(a \cdot b \cdot c \cdot \cdots)]=1$, where the sum is taken for all such partitions of n.

Example 3. If we differentiate the members of (14) with respect to t and then set $t=1$, we get the formula

$$
\begin{aligned}
1+\frac{1}{2}+ & \frac{1}{3}+\cdots+\frac{1}{n} \quad\left(\nu_{1}+\nu_{2}+\cdots+\nu_{n}\right) \\
& =\sum \frac{\left(1 \cdot 2 \cdot \cdots \cdot \nu_{1}\right)\left(2 \cdot 4 \cdot \cdots \cdot 2 \nu_{2}\right) \cdots\left(n \cdot 2 n \cdot \cdots \cdot n \nu_{n}\right)}{(1 \cdot 2}
\end{aligned}
$$

This may likewise be interpreted as a theorem on partitions of n.
Northwestern University

[^1]
[^0]: * Presented to the Society, September 5, 1936.

[^1]: * Jacobi, Zur combinatorischen Analysis, Crelle's Journal, vol. 22 (1841), pp. 372374.

