A NOTE ON NORMAL DIVISION ALGEBRAS OF PRIME DEGREE*

A. A. ALBERT

Wedderburn has proved \dagger that all normal division algebras of degree three over a non-modular field Ω are cyclic algebras. It is easily verified that his proof is actually correct for Ω of any characteristic not three, and I gave a modification of his proof \ddagger showing the result also valid for the remaining characteristic three case. Attempts to generalize Wedderburn's proof to algebras of prime degree $p>3$ have thus far been futile, and it is not yet known whether there are any non-cyclic algebras of prime degree. One notes that in both Wedderburn's proof and my modification one starts by studying a non-cyclic cubic field and thus a subfield of a normal splitting field of degree six with a quadratic (cyclic) subfield. I have generalized this property to the case of arbitrary prime degree and have now provided a new proof of the Weddenburn theorem for algebras of degree three in the characteristic three case. The result is the special case $p=3, m=2$ of the following theorem:

Theorem. Let \mathfrak{D} be a normal division algebra of degree p over a field Ω of characteristic p, and let m be prime to p. Then if \mathfrak{D} has a normal splitting field \mathfrak{W} of degree $p m$ over Ω, with a cyclic subfield \mathbb{R} of degree m over Ω, it follows that the algebra \mathfrak{D} is a cyclic algebra.

In our proof we shall use the following known theorems§ on normal division algebras \mathfrak{D} of degree n over arbitrary fields Ω :

Lemma 1. Let \mathfrak{R} have degree prime to n. Then $\mathfrak{D}_{\mathfrak{R}}$ is a division algebra.
Lemma 2. Let \mathfrak{B}_{0} have degree n over Ω and split \mathfrak{D}. Then \mathfrak{B}_{0} is equivalent to a (maximal) subfield of \mathfrak{D}.

Lemma 3. Let \mathfrak{D} have a cyclic subfield of degree n. Then \mathfrak{D} is a cyclic algebra.

[^0]Lemma 4. Let \mathfrak{D} of prime degree $n=p$ over Ω have a splitting field $\mathfrak{Y}=\Omega(y)$, such that $y^{p}=\gamma$ in Ω. Then \mathfrak{D} is a cyclic algebra.

To make our proof we let be the automorphism group of \mathfrak{W} over Ω and \mathfrak{S} the subgroup of \mathfrak{F} corresponding to \mathbb{R}. Then \mathfrak{F} is a normal divisor of $\mathfrak{H 5}$ and is of prime order $p ; \mathfrak{G}=[S]$ is a cyclic group. The group of the cyclic field \mathfrak{R} over Ω is the quotient group $\$ / 55$ and is a cyclic group $\left[\mathfrak{S} T\right.$]. Here T is an automorphism of \mathfrak{G} and $T^{m}=S^{\alpha}$ in \mathfrak{S}. But then $\left[\mathfrak{S} T^{p}\right]=[\mathfrak{S} T]$ since p is prime to $m,(\mathfrak{S} T)^{p}=\mathfrak{S} T^{p}$, and $T^{p m}=S^{p \alpha}=I$. Hence we may assume without loss of generality that $T^{m}=I$. Since $\mathfrak{S} T$ has order m so does T. The cyclic subgroup $\mathfrak{I}=[T]$ of (5) corresponds to a subfield \mathfrak{B}_{0} of degree p over Ω of \mathfrak{M}, and we have the following lemma:

Lemma 5. The field \mathfrak{B}_{0} splits \mathfrak{D}.

For clearly \mathfrak{W} is the composite of \mathfrak{B}_{0} and \mathfrak{R}, and $\mathfrak{W}=\left(\mathfrak{B}_{0}\right)_{\mathfrak{R}}$. Now \mathfrak{D} has prime degree, and either B_{0} splits \mathfrak{D} or $\mathfrak{D}_{3_{0}}$ is a division algebra. In the latter case by Lemma 1 the algebra $\left(\mathfrak{D}_{\mathfrak{B}_{0}}\right)_{\Omega}=\mathfrak{D}_{\mathfrak{W}}$ is a division algebra, contrary to our hypothesis that \mathfrak{W} splits \mathfrak{D}.

Since \mathfrak{S} is a normal divisor of $\mathfrak{H F}$ we have $T \mathfrak{S}=\mathfrak{S} T, T S=S^{e} T$. If $e=1$, then the group [T] is a normal divisor of \mathbb{G}, and 3_{0} is cyclic of degree p over Ω. By Lemmas 5 and 3 the algebra \mathfrak{D} is cyclic. There remains the case $e>1$.

Now $T^{2} S=T S^{e} T=S^{2} T, \cdots, T^{m} S=S^{m} T^{m}=S=S^{e}$. Since S has order p we have

$$
\begin{equation*}
e^{m} \equiv 1(\bmod p), \quad 0<e \leqq p-1 \tag{1}
\end{equation*}
$$

We let ν be the least positive integer such that $e^{\nu} \equiv 1(\bmod p)$. Now $\nu \neq 1$, and ν must divide both $p-1$ and m. It follows that

$$
\begin{equation*}
m=\nu q, \quad p-1=\mu \nu \tag{2}
\end{equation*}
$$

for integers μ and q. Notice that the group [T] is not a normal divisor of (5), so that \mathfrak{B}_{0} is not a cyclic field over Ω.

By Lemmas 2, 5 the algebra \mathfrak{D} has a subfield \mathfrak{Z} of degree p over Ω equivalent to \mathfrak{B}_{0}. Evidently $\mathfrak{B}_{\mathbb{R}}$ is equivalent to \mathfrak{N}, and $\mathfrak{B}_{\mathbb{R}}=\mathfrak{B} \times \mathbb{R}$. But the group of \mathfrak{W} over \mathbb{R} is $\mathfrak{Y} ; \mathfrak{B}_{\mathfrak{R}}$ is cyclic of degree p over \mathbb{R} with generating automorphism which we shall designate by S. Moreover if z is in $\mathfrak{B}_{\mathfrak{R}}$, the automorphism S which is given by $z \longleftrightarrow z^{S}$ goes into $z^{T} \longleftrightarrow\left(z^{S}\right)^{T}=\left(z^{T}\right)^{S^{e}}$ which is the automorphism S^{e} of $\mathcal{B}_{\mathfrak{R}}$.

By Lemma 3 we have $\mathfrak{D}_{\mathfrak{R}}=\mathfrak{D} \times \mathfrak{R}=\left(\mathfrak{D}_{\mathfrak{R}}, S, g\right)$ for g in \mathfrak{R}. This algebra has the automorphism

$$
\begin{equation*}
d \longleftrightarrow d, \quad \lambda \longleftrightarrow \lambda^{T}, \quad d \text { in } \mathfrak{D}, \lambda \text { in } \mathbb{R} . \tag{3}
\end{equation*}
$$

Apply this automorphism to $\mathfrak{D} \times \mathbb{R}$ and obtain

$$
\begin{equation*}
\mathfrak{D} \times \mathbb{R}=\left(\mathfrak{Z}_{\mathfrak{R}}, S^{e}, g^{T}\right) \tag{4}
\end{equation*}
$$

But then it is known that

$$
\begin{equation*}
\mathfrak{D}=\left(\mathfrak{B}^{\mathfrak{Z}}, S,\left(g^{T}\right)^{f}\right) \sim\left(\mathfrak{B}_{\mathfrak{Z}}, S, g^{T}\right)^{f} \tag{5}
\end{equation*}
$$

where f is chosen so that $e f \equiv 1(\bmod p)$. It follows that

$$
\begin{equation*}
\mathfrak{D} \sim\left(\mathfrak{B}, S, g^{T^{i}}\right) f^{j}, \quad j=1,2, \cdots, n \tag{6}
\end{equation*}
$$

We form $g_{0}=g g^{T^{\nu}} \cdots g^{T \nu(q-1)}$ which is in the cyclic subfield Λ of \mathbb{R} of degree ν over Ω. Now
(7) $\mathfrak{A}=\left(\mathfrak{B}_{\mathfrak{R}}, S, g\right) \times\left(\mathfrak{B}_{\mathfrak{R}}, S, g^{T^{\nu}}\right) \times \cdots \times\left(\mathfrak{B}_{\mathfrak{R}}, S, g^{7^{\nu(q-1)}}\right) \sim\left(\mathfrak{B}_{\mathfrak{R}}, S, g_{0}\right)$ over \mathfrak{R}. But $\mathfrak{A} \sim\left(\mathfrak{D}_{\mathfrak{g}}\right)^{\alpha}$, where by (6) we have

$$
\begin{equation*}
\alpha=1+f^{\nu}+f^{2 \nu}+\cdots+f^{(q-1) \nu} \equiv q(\bmod p) \tag{8}
\end{equation*}
$$

since $e^{\nu} \equiv 1(\bmod p), e f \equiv 1(\bmod p),(e f)^{\nu} \equiv f^{\nu} \equiv 1(\bmod p)$. Now q is prime to p; hence $q q_{0} \equiv 1(\bmod p)$, and $\mathfrak{U} q_{0} \sim\left(\mathfrak{B}_{\mathbb{R}}, S, g_{0} q_{0}\right) \sim\left(\mathfrak{D}^{q q_{0}}\right)_{\mathbb{R}} \sim \mathfrak{D}_{\mathbb{R}}$, where $g_{0} q_{0}$ is in Λ. It follows that there is no loss of generality if we assume that g is in Λ. We shall make this assumption.

By (6) we have

$$
\begin{align*}
\left(\mathfrak{D}_{\mathfrak{R}}\right)^{\nu} \sim\left(\mathfrak{ß}_{\mathfrak{R}}, S, g\right) \times\left(\mathfrak{ß}_{\mathfrak{k}}, S, g^{T}\right)^{f} & \times \cdots \\
& \times\left(\mathfrak{ß}_{\mathfrak{R}}, S, g^{T^{\nu-1}}\right)^{f^{\nu-1}} \sim\left(\mathfrak{ß}_{\mathfrak{R}}, S, \gamma_{0}\right) \tag{9}
\end{align*}
$$

where

$$
\begin{equation*}
\gamma_{0}=\prod_{k=1}^{\nu}\left(g^{g^{k}}\right)^{k} \tag{10}
\end{equation*}
$$

But then

$$
\begin{equation*}
\gamma_{0}^{T}=\prod_{k=1}^{\nu}\left(g^{T^{k+1}}\right)^{f k}, \gamma_{0}^{e}=\prod_{k=1}^{\nu}\left(g^{T^{k}}\right)^{e f^{k}} \tag{11}
\end{equation*}
$$

Since $e f \equiv 1(\bmod p)$ we have

$$
\begin{equation*}
\gamma_{0}{ }^{T}=\lambda_{0}{ }^{p} \gamma_{0}{ }^{e}, \quad \quad \lambda_{0} \text { in } \Lambda \tag{12}
\end{equation*}
$$

Now $\nu \nu_{0} \equiv 1(\bmod p)$ and $\left(\mathfrak{D}_{\mathfrak{R}}\right)^{\nu_{0}} \sim \mathfrak{D}_{\mathfrak{R}} \sim\left(\mathfrak{D} \mathfrak{R}, S, \gamma_{1}\right)$, where $\gamma_{1}=\gamma_{0}{ }^{\nu_{0}}$, and (12) implies that

$$
\begin{equation*}
\gamma_{1}{ }^{T}=\lambda^{p} \gamma_{1}{ }^{e}, \quad \lambda \text { in } \Lambda \tag{13}
\end{equation*}
$$

Since $\mathfrak{D}_{\mathfrak{R}}$ and $\left(\mathfrak{S}_{\mathfrak{R}}, S, \gamma_{1}\right)$ have the same order, they are equivalent, and we have proved the following lemma:

Lemma 6. The algebra $\mathfrak{D}_{\mathfrak{R}}$ has the generation $\mathfrak{D}_{\mathfrak{R}}=\left(\mathfrak{D}_{\mathfrak{R}}, S, \gamma\right)$ where γ_{1} is in Λ and (13) holds.

The cyclic algebra \mathfrak{D}_{ℓ} contains a quantity y_{0} such that $y_{0}{ }^{p}=\gamma_{1}$, and $\mathfrak{R}\left(y_{0}\right)$ is a maximal subfield of $\mathfrak{D}_{\mathbb{R}}$. Hence $\mathbb{R}\left(y_{1}\right) \cong \mathbb{R}\left(y_{0}\right)$ is a scalar splitting field of $\mathfrak{D}_{\mathfrak{R}}$. But by (13) we have

$$
\begin{equation*}
\gamma_{1}^{T^{j}}=\lambda_{j}{ }^{p}{\gamma_{1}}^{e^{j}}, \quad j=0,1, \cdots, \nu-1 ; \tag{14}
\end{equation*}
$$

and if

$$
\begin{equation*}
y=y_{1}+\lambda_{1} y_{1}{ }^{e}+\lambda_{2} y_{1} e^{2}+\cdots+\lambda_{\nu-1} y_{1}{ }^{\nu}{ }^{\nu-1} \tag{15}
\end{equation*}
$$

then $\mathfrak{R}\left(y_{1}\right)=\mathfrak{R}(y)$. For $0<e \leqq p-1, e^{i} \equiv e^{j}(\bmod p)$ if and only if $i-j$ is divisible by $\nu ; y$ is clearly not in \mathfrak{R}, and y in $\mathfrak{R}\left(y_{1}\right)$ generates $R\left(y_{1}\right)$. It follows that $\mathbb{R}(y)$ splits $\mathfrak{D}_{\mathbb{R}}$. But Ω has characteristic p and

$$
\begin{equation*}
y^{p}=\gamma_{1}+\gamma_{1}^{T}+\cdots+\gamma_{1}^{T^{\nu-1}}=\gamma \text { in } \Omega . \tag{16}
\end{equation*}
$$

Now $\Omega(y)=[\Omega(y)]_{\Omega}$, and $\Omega(y)$ splits \mathfrak{D} by the proof of Lemma 5 . By Lemma 4, \mathfrak{D} is a cyclic algebra.

In closing let us note that all of our proof is valid for arbitrary fields except the final result (16), which depends essentially* upon the property that Ω has characteristic p.

The University of Chicago

[^1]
[^0]: * Presented to the Society, April 8, 1938.
 \dagger Transactions of this Society, vol. 22 (1921), pp. 129-135.
 \ddagger Transactions of this Society, vol. 36 (1934), pp. 388-394.
 \S Cf. Deuring's Algebren for our notation and the proofs of the results of Lemmas $1,2,3$. Lemma 4 was proved by the author for Ω of characteristic not p, Transactions of this Society, vol. 36 (1934), pp. 885-892, and for Ω of characteristic p, ibid., vol. 39 (1936), pp. 183-188.

[^1]: * Added in proof: When $p=3$ we may replace (13) by $\gamma_{1}^{T}=\gamma_{1}^{-1}$, and direct computation shows that if a is in 3 with trace zero and norm α, and $u=a\left(1+y_{1}+y_{1}^{-1}\right)$, then $u^{3}=\alpha\left(2+\gamma_{1}+\gamma_{1}^{T}\right)$ in Ω. This proves \mathfrak{D} cyclic for any characteristic.

