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METRIC PROPERTIES OF THE CYLINDER 
OF KUBOTA 

RUTH B. RASMUSEN 

1. Introduction. It is the purpose of this note to derive some prop­
erties of the surface normal and the super osculating lines on an ana­
lytic surface S by means of a parabolic cylinder which Kubota has 
defined* and has used for studying the properties of the affine normal 
to a surface and the curves of Darboux and Segre in affine differential 
geometry. If we consider all of the sections of an analytic surface 5 
made by planes passing through the same tangent t, the locus of the 
parabolas which osculate these sections at the common point of con­
tact P is a parabolic cylinder which we shall call the cylinder of 
Kubota. 

In what follows we shall adhere quite closely to the notation used 
in Chapter 6 of Lane's Projective Differential Geometry of Curves and 
Surfaces, Chicago, 1932. 

2. Analytic basis. It is convenient to take the lines of curvature 
for the parametric curves and to employ a local trihedron at a point 
of the surface whose edges are the tangents of the lines of curvature 
and the normal of the surface at the point. This section is designed 
to introduce these concepts and to collect some formulas which will 
be used later on in this note. 

Let us consider in ordinary metric space a non-developable surface, 
not a sphere, whose parametric equations in cartesian coordinates are 

x = x(u, v), y = y(u, v), z = z(u, v). 

Let the lines of curvature be the parametric curves on this surface. 
Then its first and second fundamental forms, written in the custom­
ary notation, are 

Edu2+G dv2, Ddu2 + D"dv2. 

The principal radii of normal curvature Ri, R2 at a point of the sur­
face are defined by the formulas Ri = E/D, R2 = G/D". 

As a local trihedron of reference at a point (x, y, z) of the surface S, 

* T. Kubota, Einige Bemerkungen zur Affinflachentheorie, The Science Reports of 
the Tôhoku Imperial University, (1), vol. 19 (1930), p. 163. See also T. Kubota, 
Einige Bemerkungen zur Affinflachentheorie, Japanese Journal of Mathematics, vol. 10 
(1933), p. 217. 
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we shall take the origin at this point, the £-axis along the //-tangent, 
the 77-axis along the zj-tangent, and the f-axis along the surface normal. 

The power series expansions for the local coordinates £, 77, f of a 
point near a point P (0, 0, 0) on a surface «S in terms of the increments 
Au, Av corresponding to displacement on 5 from the point (0, 0, 0) 
to the point (£, 77, f) are 

£ = Elt2[Au+±({ll,l}Au2+2{l2,l}Au Av+{22, 1}AZ>2) + • • • ] , 

ri = Gli2[Av+i({ll, 2}A^2+2{12, 2}AU A I>+{22 , 2}AÎ;2) + • • • ] , 

Ç = \(DAu*+D"Av2)+\[(Du+{n, l}D)Au*+3{l2, 1}DAU2AV 

+ 3{12, 2}/y ,A^Az;2+(ZV'+{22, 2}D")Av*] + 

From the expansions (1) it is possible to compute an expansion for f 
as a power series in £, 77 with undetermined coefficients and then de­
mand that the expansions for §, 77, f in (1) shall satisfy this equation 
identically in Au, Av as far as the terms of any desired order. Thus we 
find, to terms of the third order, 

(2) f = —(^ + ~ ) + -T (ao? + Sai^ + 3a^2 + a^3) + "' > 
2 \Ki R2 / 6 

where 

a3 ~ ^\RJ; 
3. The equation of the cylinder of Kubota. In order to find the 

equation of the parabolic cylinder of Kubota, let us regard a curve C 
as imbedded in the one-parameter family of curves on the surface 5 
defined by the equation dv—\du = 0, where X is a function of u, v. 
The tangent t of the curve C at point P has the equations f =77 — A% 
= 0, where 

/G\112 

If we cut the surface (2) by the plane 

(3) r = n(rj-A0, 

not passing through an asymptotic tangent, then the equation of the 
parallel projection of the curve of section in the direction of the f-axis 
on the tangent plane is 
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(4) n(v~A0 = — ( _ + — ) + —*s(Ç, !,) + . • • . 

It is convenient to make the following definition of «foC?, v) ' 

4>z(%9 v) = <*o£3 + 3ai%2r) + 3a2^
2 + azr}3. 

If n 5^0, equation (4) is representable as a power series in the form 

(5) v = ^ + ^ 2 + Q 3 + • ' ' , 

in which the coefficients have the following values : 

/ G Y ' 2 1 / 1 ,42 \ AB I 

The equation of the osculating parabola at P of the curve (5) is 

(6) pe + q& + ry2 + v ~ M = 0, 

in which the coefficients are given by 

p = A2r + (AC - B2)/B, q = - (2ABr + C)/B, r = - C2/4£3 . 

If we eliminate n between equations (3) and (6), we obtain 

[3ft/*i + Av/R2)(l/Rx + ^Vi?2) + 0,(1, A)?]2 

- m(VRi + A2/R2y = 0, 

which is the equation of the parabolic cylinder of Kubota. 

4. Properties. The equation of the diametral plane of cylinder (7) 
which passes through the point P is 

(8) 3&/Rl + Ay]/R2)(\/Rl + A2/R2) + 08(1, A)? = 0. 

We now proceed to prove the following theorem: 

If the tangent t is permitted to vary about the point P, the diametral 
plane passing through the point P of this parabolic cylinder envelops an 
algebraic cone of the fourth order and the third class with three cusp edges 
which intersect in the line of centers of the quadrics of Darboux. Three 
tangent planes intersect in the surface normal. The three directions of the 
tangent t to which these tangent planes correspond are the tangents of the 
super osculating lines, and these tangent planes give as the lines of inter­
section with the tangent plane the harmonic conjugates of the tangents of 
the super osculating lines. 

In order to obtain the equation of the enveloping cone of plane (8) 
in tangential coordinates, we set 
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pux = (1/R1+A*/R2)/R1, 

pu2 = A(l/Rl + A*/R2)/R2, 

pu3 = 03(1, ^l) /3 . 

Eliminating p and X homogeneously from the above equations, we ob­
tain 

3G1/2Rx(GRiUX
2 + ER2u2

2)us = tf8(G
1/222i«i, E^R2u2). 

Consequently the cone is of class three. 
The equation of the enveloping cone of plane (8) in point coordi­

nates is obtained by eliminating X between equation (8) and the equa­
tion obtained by differentiating equation (8) with respect to X. The 
equation of the cone in point coordinates is 

(9) ( « — ) - i^d - 27a*d2 + bV - Aac3 + 18abcd] = 0, 

in which 

a = 

a, b, 

V 

7̂ 

c, 

+ 

d are 

3 

defined by 

b = 

d = 

R1R2 
+ a2f, c = + «if, 

RiR2 

«of 

3 

Neglecting the factor a, we see that the cone is of the fourth degree 
in £, 77, f. The planes a = 0 and d = 0 are tangent planes, and the lines 
a = & = 0 and c = d = 0 are generators, of cone (9). 

When a surface is referred to its lines of curvature, the curves which 
possess the property that the normal sections in the directions of 
these curves at a point are straight lines, or are superosculated by 
their circles of curvature, are called the super osculating lines* of the 
surface. By direct computation it can be shown that as w—>co the 
directions for which curve (4) is superosculated by its osculating circle 
are given by 

«8(1,4) = 0. 

Using the definition of the superosculating lines, and verifying that 
the harmonic conjugate of ^ = rj—A^ = 0 is f = £/i£i+Arj/R2 = 0, we 
obtain the above theorem. 
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* Eisenhart? Differential Geometry, Boston, 1909, p. 187. 


