ON THE ABSOLUTE SUMMABILITY OF FOURIER SERIES*

W. C. RANDELS

1. Introduction. A series $\sum u_{n}$ is said to be absolutely summable by a method a defined by a matrix $a_{m n}$ if

$$
\sum_{m=1}^{\infty}\left|S_{m}(\mathfrak{a}, u)-S_{m-1}(\mathfrak{a}, u)\right|<\infty,
$$

where

$$
S_{m}(\mathfrak{a}, u)=\sum_{n=0}^{\infty} a_{m n} u_{n}
$$

Similarly a series is said to be absolutely summable $|A|$ if

$$
S(r, u)=\sum_{n=0}^{\infty} u_{n} r^{n} \subset B V \quad \text { on } \quad(0,1) .
$$

It is known that if $\sum u_{n}$ is absolutely summable $\left|C_{\alpha}\right|$ for some $\alpha>0$, then it is absolutely summable $|A|$. There are, however, series absolutely summable $|A|$ but not $\left|C_{\alpha}\right|$ for any α whatever. We intend to give here an example of a Fourier series with that property.

Bosanquet \dagger has proved that, if the Fourier series of $f(x)$ is absolutely summable $\left|C_{\alpha}\right|$, then the function

$$
\phi_{\beta}(f, t)=\beta t^{-\beta} \int_{0}^{t}\{f(x+\tau)+f(x-\tau)-2 f(x)\}(t-\tau)^{\beta-1} d \tau
$$

is of bounded variation on $(0, \pi)$ for $\beta>\alpha$; and conversely, if $\phi_{\alpha}(t)$ is of bounded variation, the Fourier series of $f(x)$ is absolutely summable $\left|C_{\beta}\right|,(\beta>\alpha+1)$.
2. Preliminary definitions. Let $\alpha_{n k}, \beta_{n k}$ be defined for $n=1,2, \cdots$, $k=1,2, \cdots, n$, by

$$
\begin{equation*}
\alpha_{n k}=2^{-k-n-n /(k-1 / 2)}, \quad \beta_{n k}=2^{-n}-2^{-n-n /(k-1 / 2)} . \tag{1}
\end{equation*}
$$

Then, since $k \leqq n$, we have

$$
\beta_{n k}>2^{-n-1}
$$

[^0]Let $f_{n k}(x)$ be defined over $-\pi \leqq x \leqq \pi$, so that
(2) $f_{n k}(x)=2^{n}, \quad \beta_{n k} \leqq|x| \leqq \beta_{n k}+\alpha_{n k}$,
(3) $\quad f_{n k}(x)=-f_{n k}\left(x-2^{j} \alpha_{n k}\right), \quad \beta_{n k}+2^{j} \alpha_{n k}<|x| \leqq \beta_{n k}+2^{j+1} \alpha_{n k}$,
(4) $f_{n k}(x)=0 \quad$ elsewhere on $(-\pi, \pi)$,
where in (3) j takes on the values $0, \cdots, k-1$. The relation (3) implies that

$$
\int_{\beta_{n k}}^{\beta_{n k}+2 \alpha_{n k}} f_{n k}(x) d x=\int_{\beta_{n k}}^{\beta_{n k}+\alpha_{n k}} f_{n k}(x) d x-\int_{\beta_{n k}}^{\beta_{n k}+\alpha_{n k}} f_{n k}(x) d x=0
$$

and by induction

$$
\int_{\beta_{n k}}^{\beta_{n k}+2^{j} \alpha_{n k}} f_{n k}(x) d x=0, \quad 1 \leqq j \leqq k
$$

If we define

$$
\Phi_{1}(f, t)=\int_{0}^{t}\{f(x)+f(-x)-2 f(0)\} d x
$$

we can obtain the following relations analogous to (3) and (4):
(5) $\quad \Phi_{1}\left(f_{n k}, t\right)=-\Phi_{1}\left(f_{n k}, t-2^{j+1} \alpha_{n k}\right), \quad \beta_{n k}+2^{j+1} \alpha_{n k}<x \leqq \beta_{n k}+2^{j+2} \alpha_{n k}$, (6) $\Phi_{1}\left(f_{n k}, t\right)=0$ elsewhere on $(0, \pi)$,
where in (5) j takes on the values $0, \cdots, k-2$.
We define by induction the functions

$$
\Phi_{r+1}(f, t)=(r+1) \int_{0}^{t} \Phi_{r}(f, x) d x
$$

for which it can be shown by similar reasoning that, for $r \leqq k$,

$$
\begin{equation*}
\Phi_{r}\left(f_{n k}, t\right)=-\Phi_{r}\left(f_{n k}, t-2^{r+j} \alpha_{n k}\right), \quad \beta_{n k}+2^{r+j} \alpha_{n k}<x \leqq \beta_{n k}+2^{r+j+1} \alpha_{n k} \tag{7}
\end{equation*}
$$

(8) $\Phi_{r}\left(f_{n k}, t\right)=0, \quad$ elsewhere on $(0, \pi)$,
where in (7) j takes on the values $0, \cdots, k-r-1$. We notice that, at $x=0, \phi_{r}(f, t)=t^{-r} \Phi_{r}(f, t)$, and therefore for $r \leqq k-1$

$$
\begin{aligned}
\phi_{r}\left(f_{n k}, \beta_{n k}+\alpha_{n k}\right) & =2 r\left(\beta_{n k}+\alpha_{n k}\right)^{-r} \int_{\beta_{n k}}^{\beta_{n k}+\alpha_{n k}} 2^{n}\left(\beta_{n k}+\alpha_{n k}-x\right)^{r-1} d x \\
& =2^{n+1} r\left(\beta_{n k}+\alpha_{n k}\right)^{-r} \int_{0}^{\alpha_{n k}}\left(\alpha_{n k}-x\right)^{r-1} d x \\
& >2^{n+1} r 2^{n r} \alpha_{n k}^{r}>2^{-k r} 2^{n / 2 k}
\end{aligned}
$$

since

$$
n(r+1)-r\{n+n /(k-1 / 2)\}=n\{1-r /(k-1 / 2)\}>n / 2 k .
$$

This shows that, for $r<k$,

$$
T . V \cdot{ }_{(0, \pi)} \phi_{r}\left(f_{n k}, x\right)>2^{-k r} 2^{n / 2 k}
$$

On the other hand,

$$
\phi_{k}^{\prime}\left(f_{n k}, t\right)=k t^{-k} \Phi_{k-1}\left(f_{n k}, t\right)-k t^{-k-1} \Phi_{k}\left(f_{n k}, t\right)
$$

so that, if $I=\left(\beta_{n k}, \beta_{n k}+2^{k} \alpha_{n k}\right)=\left(\beta_{n k}, 2^{-n}\right)$, then

$$
\begin{aligned}
\int_{I}\left|\phi_{k}^{\prime}\left(f_{n k}, t\right)\right| d t= & O\left\{2^{k n} \int_{0}^{2^{k} \alpha_{n k}} 2^{n}\left(2^{k} \alpha_{n k}-t\right)^{k-1} d t\right. \\
& \left.+2^{(k+1) n} \int_{0}^{2^{k} \alpha_{n k}} 2^{n}\left(2^{k} \alpha_{n l k}-t\right)^{k} d t\right\} \\
= & O\left(2^{-n / 2 k}\right)
\end{aligned}
$$

Therefore

$$
T . V \cdot(0, \pi) \phi_{k}\left(f_{n k}, t\right)=O\left(2^{-n / 2 k}\right)
$$

3. Definition of $f(x)$. We define the functions

$$
f_{k}(x)=\sum_{\left[\log _{2} k\right]+1}^{\infty} f_{2^{n}+k, k}(x)
$$

For $r \leqq k$

$$
\phi_{r}\left(f_{2^{n}+k, k}, t\right) \cdot \phi_{r}\left(f_{2^{n}+k, k}, t\right)=0, \quad m \neq n
$$

and therefore

$$
T . V \cdot(0, \pi) \phi_{r}\left(f_{k}, t\right)=\sum_{\left[\log _{2} k\right]+1}^{\infty} T \cdot V \cdot(0, \pi) \phi_{r}\left(f_{2^{n}+k, k}, t\right)=\infty, \quad r<k
$$

and
(9) $\quad T \cdot V \cdot{ }_{(0, \pi)} \phi_{k}\left(f_{k}, t\right)=\sum_{\left[\log _{2} k\right]+1}^{\infty} T . V \cdot{ }_{(0, \pi)} \phi_{k}\left(f_{2^{n}+k, k}, t\right)$

$$
=O\left(\sum_{1}^{\infty} 2^{-j / 2 k}\right)=O(1)
$$

It follows then that, for $s>k$,

$$
\phi_{s}\left(f_{k}, t\right) \subset B V \quad \text { on } \quad(0, \pi) .
$$

The Fourier series of $f_{k}(x)$ must be absolutely summable $|A|$, at $x=0$. We set

$$
A_{k}=T \cdot V \cdot(0,1) \frac{1}{\pi} \int_{0}^{\pi} f_{k}(t) \frac{1-r^{2}}{1-2 r \cos t+r^{2}} d t
$$

A sequence d_{k} is then defined so that

$$
\begin{align*}
& d_{k} \leqq A_{k} 2^{-k} \tag{10}\\
& d_{k} \leqq 2^{-k} \int_{0}^{\pi}\left|f_{k}(x)\right| d x \tag{11}
\end{align*}
$$

The function

$$
f(x)=\sum_{1}^{\infty} d_{k} f_{k}(x)
$$

is the one we set out to construct. By (11), $f(x) \subset L$, since

$$
\int_{0}^{\pi}|f(x)| d x \leqq \sum_{1}^{\infty} d_{k} \int_{0}^{\pi}\left|f_{k}(x)\right| d x \leqq \sum_{1}^{\infty} 2^{-k}=1
$$

We have, by (10),

$$
T . V \cdot(0,1) \frac{1}{\pi} \int_{0}^{\pi} f(t) \frac{1-r^{2}}{1-2 r \cos t+r^{2}} d t \leqq \sum_{1}^{\infty} d_{k} A_{k} \leqq \sum_{1}^{\infty} 2^{-k}=1
$$

which means that the Fourier series of $f(x)$ is absolutely summable $|A|$, at $x=0$. Finally, using (9) we see that

$$
\begin{aligned}
T \cdot V \cdot{ }_{(0, \pi)} \phi_{j}(f, t) & >T \cdot V \cdot{ }_{(0, \pi)} \phi_{j}\left(f_{j}, t\right)-\left|\sum_{1}^{j-1} T \cdot V \cdot{ }_{(0, \pi)} \phi_{j}\left(f_{k}, t\right)\right| \\
& =\infty-O(1)=\infty
\end{aligned}
$$

so the Fourier series of $f(x)$ cannot be $\left|C_{j}\right|$ summable at $x=0$, for any j. This completes the proof of our assertion.

Northwestern University

[^0]: * Presented to the Society, December 30, 1937.
 \dagger L. S. Bosanquet, The absolute Cesàro summability of Fourier series, Proceedings of the London Mathematical Society, vol. 41 (1936), pp. 517-528.

