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NON-EUCLIDEAN GEOMETRY OF JOINING 
AND INTERSECTING 

KARL MENGER 

Projective geometry is called geometry of joining and intersecting 
in old German textbooks. This suggested that we might base projec­
tive geometry on assumptions concerning two operations of joining 
and intersecting as the algebra of numbers may be based on assump­
tions concerning two operations of adding and multiplying. The clas­
sical treatments of geometry did not mention assumptions as simple 
as "the line through the points P and Q is the same as the line through 
the points Q and P . " From the point of view of an algebra of geome­
try, this omission is comparable to an axiomatization of algebra in 
which the commutativeness of addition is not mentioned. The aston­
ishing feature of this algebra of geometry is that from simple assump­
tions like the commutativeness and associativeness of the operations 
the whole of projective geometry can be deduced. If we start with 
one class of elements, a priori not classified according to their dimen­
sions, the operations allow us to introduce a part relation and to base 
a definition of dimension on it. A point is defined,* in accordance with 
Euclid's famous words, as that which has no parts, a straight line as 
an element which joins two distinct points, a plane as an element 
which joins three distinct points none of which lies on the line joining 
the two others, a hyperplane as an element that is not part of any 
other element except of the whole space. 

The algebra of geometry leads to a new point of view concerning 
the relation between different geometries. So far, this relationship has 
been mostly considered from the point of view of groups of transfor­
mations. Thus euclidean and non-euclidean geometry were coordi­
nated, and each of them subordinated to projective geometry. The 
classical postulational treatments obtained affine geometry from pro­
jective geometry by omission of a hyperplane ("of infinity"), and 
projective geometry from affine geometry by adding a hyperplane of 
infinity, the basic concepts and assumptions of projective and affine 
geometry being quite different. An algebraic treatment in the sense 
above explained is possible both for projective and affine geometry, 
both being founded on joining and intersecting and on a certain set of 

* See the author 's paper, Jahresbericht der deutschen Mathematiker-Vereinigung, 
vol. 37 (1928), pp. 309-325. 
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common assumptions.* The two geometries are in that way coordi­
nated. Either is obtained by adding one assumption to the set of com­
mon assumptions: projective geometry is obtained by adding "any 
element that is not a point has a nonvacuous intersection with each 
hyperplane," affine geometry by adding the parallel assumption, "if 
L is a line and P is a point outside L, then the plane joining L and P 
contains exactly one line through P whose intersection with L is 
vacuous." 

In the discussion which follows, I wish to point out how non-eu-
clidean geometry can be coordinated with affine and projective geom­
etry. 

The classical way of introducing the concept of parallelism in the 
Bolyai-Lobatchefski plane is based on the concept of angular sector 
(the lines through a point P which do not intersect a line L are as­
sumed to fill an angular sector whose extreme lines are called the 
two parallels to L through P) ; the classical proofs of the properties of 
this parallelism (symmetry, transitivity, and so on) presuppose a 
linear order of the points on each straight line. 

I t is possible, however, to introduce parallelism in terms of joining 
and intersecting exclusively. Angular sectors and linear order are not 
a necessary basis for the concept of parallelism. On the contrary, these 
concepts and many others may be defined in terms of parallelism, 
and thus ultimately in terms of joining and intersecting. If the point 
P is not on the line L, then the pair of parallels to L through P , say L ' 
and L", is the only pair of lines through P which has the properties 
that L' and L" do not intersect L, and that any line intersecting L 
intersects a t least one of the lines L' and L".f The easiest way in 
which to verify this characterization of the parallels is described 
by Klein's model for the non-euclidean plane or, more generally, 
by the points interior to any convex curve and the open segments 
obtained by intersecting the open convex region with the straight line. 

In the same way, one easily verifies the following statements : Two 
nonintersecting lines L± and L2 are parallel if and only if there exists a 
third line Lz, not intersecting L\ and L2, and such that through each 
point of L% there passes but one line not intersecting the lines L\ 
and Z/2. 

Two points P ' and P" lie on the same side or on different sides of 
the line Z,, according to whether the parallels to L through P' and 

* See the contribution of F. Alt to our joint paper, Annals of Mathematics, 
(2), vol. 37 (1936), pp. 456-482. 

t The euclidean plane is obtained as the case in which the two parallels to any line 
through any point are identical. 
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through P " do or do not intersect. Each of the four angular sectors 
determined by two intersecting straight lines L\ and L% consists of 
the points lying on one side of L\ and on one side of L2. The segment 
of a line determined by two points or, in other words, the points of the 
line L between two points P\ and P2 can be characterized in the fol­
lowing way : Let Li and L2 be two parallel lines passing through P i 
and P2, respectively. The points between Pi and P2 are the only ones 
that lie on L and have the property that through each of them there 
exists exactly one straight line that intersects neither L\ nor L^ Three 
noncollinear points Pi, P2, P3 determine three lines and on each of 
them a segment; a point P lies in the interior of the triangle, with the 
points Pi , P2, P3 as vertices and the three segments as sides, if and 
only if each line through P which does not pass through any of the 
three vertices intersects exactly two of the three sides. Obviously, all 
these considerations can be extended to Bolyai-Lobatchefski spaces 
of higher dimensions. 

The common principle of all these statements is, of course, the ap­
plicability of the axiom concerning the order in the euclidean plane 
which Pasch formulated for segments,* to the whole straight lines in 
a Bolyai-Lobatchefski plane; and this applicability is best illustrated 
by Klein's model in which the whole non-euclidean lines are repre­
sented by euclidean segments. For the axiomatization of the non-
euclidean geometry, the foregoing remarks have the following impli­
cations: We may start with one class of undefined elements, two 
operations (joining and intersecting of elements), and the assump­
tions which are common to projective and affine geometry. Then we 
may define non-euclidean parallels in the way indicated above. We 
can grant their existence, of course, only by a special assumption, 
and their properties (symmetry, transitivity, and so on) by special 
assumptions on the operations joining and intersecting, thus by as­
sumptions in the direction of an algebra of non-euclidean geometry. \ 

* If P , Q, R are three noncollinear points, and L is a straight line of the plane 
through P , Qr R, which does not pass through any of these three points, but passes 
through a point of the segment between P and Q, then L passes also either through a 
point of the segment between Q and R, or through a point of the segment between P 
and i ? . 

t The above mentioned formulation of the non-euclidean parallel assumption has 
the same relation to the original Bolyai-Lobatchefski assumption as the modern for­
mulation of Euclid's parallel axiom in terms of joining and intersecting ("for each line L 
and each point P outside, the plane through L and P contains exactly one line through 
P which does not intersect L") to Euclid's original formulation ("if two lines L\ and L2 
are intersected by a third line L in such a way that the sum of the interior angles on 
one side of L is less than two right angles, then L\ and L% intersect on that side 
o f ! , " ) . 
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I t is easy to formulate such assumptions, whereas I do not know 
simple assumptions to this effect.* 

Up to this point, the theory is analogous to the postulational the­
ory of projective and affine geometry as developed in our above men­
tioned paper (Annals of Mathematics, (2), vol. 37 (1936)). But in 
the algebra of non-euclidean geometry, one can furthermore intro­
duce the linear order on the line, the order in the plane and higher 
dimensional spaces, angular sectors, and so on, in the way indicated 
above, and guarantee the ordinary properties of these concepts by 
assumptions on the operations of joining and intersecting. Again it 
is obvious how to formulate assumptions to this effect, while no 
simple assumptions are known so far. 

UNIVERSITY OF NOTRE DAME 

* The following simple assumption corresponding to the convexity of the model 
is not sufficient: for any four coplanar points, at least one of the three pairs of op­
posite sides has a point of intersection. In projective geometry, each pair has. If we 
make Fano's assumption that the three diagonal points of a quadrangle are never 
collinear, then the affine geometry obtained from projective geometry by omitting 
one hyperplane ("of infinity") satisfies the above mentioned "convexity" condition. 
But in non-euclidean geometry (obtainable from projective geometry by omitting 
much more than a straight line, namely the complement of a convex domain) the 
"convexity" assumption is much stronger than the application of Fano's axiom. 


