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If we now let \[/* = r**\[/'f this equation becomes 

/ d e i \ 

(is) y — r*?W' = -/"Y'. 
\dx3* c h / 

The factor — r2 on the right-hand side of this equation shows that 
the Dirac equation for an electron is not invariant under inversions. 
However, if we set 0? = O and JU = 0, then equation (15) is numerically 
invariant under inversions. This is done in the neutrino theory of 
light. Hence that theory has the same invariance properties as the 
Maxwell theory. Veblenf and DiracJ have both shown that there is 
no nonsingular analog of the Dirac equation which is conformally 
invariant. The result given here shows how the invariance fails. We 
have given the detailed treatment of the behavior of the Dirac equa
tion under the four-dimensional inversion; the three-dimensional in
version may be treated by restricting the range of indices in (7), (8), 
and (12) to 1, 2, 3 and adding the equation x4* = x4 to (7). 
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1. Introduction. Well known results || relate the continuity proper
ties of a real function ƒ(x) to the degree of approximation to ƒ(x) by 
trigonometric sums and by polynomials in x. In more recent years 
further results If have related the continuity properties of a complex 
function f(z) to the degree of approximation to f(z) by polynomials 
in the complex variable z. The object of the present note is to obtain 
some new results lying on the border line of these two general fields 
of research. 

To be more explicit, if ƒ (z) is analytic in the annulus p > | s | > 1 /p < 1, 
the degree of convergence on \z\ = 1 of the Laurent development of 

t O. Veblen, A conformai wave equation, Proceedings of the National Academy of 
Sciences, vol. 21 (1935), p. 484. 

I P. A. M. Dirac, Wave equations in conformai space, Annals of Mathematics, (2), 
vol. 37 (1936), p. 429. 
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ƒ (z) is intimately connected with the continuity properties of ƒ (z) on 
the two circles \z\ = p and \z\ = l /p. This fact is already known 
(Bernstein, de la Vallée Poussin), if ƒ (s) has poles or certain other 
singularities on those two circles, and is established in the present 
note if f(z) or one of its derivatives satisfies a Lipschitz condition 
on | z\ =p and | z\ = 1/p. 

Once the latter connection is established, standard methods involv
ing suitable conformai transformations enable us to study the rela
tion between polynomial approximation to an analytic function f(z) 
on the segment — 1 ^ z ^ 1 and the continuity properties of ƒ(z) on 
the largest ellipse whose foci are + 1 and — 1 within which ƒ(z) is 
analytic. We also make application to the relation between trigo
nometric approximation on y = 0 (with z — x+iy) to an analytic func
t i o n / ^ ) with period 2ir and the continuity properties of the function 
on the lines y= ±b bounding a region within which f(z) is analytic. 

2. Approximation on the unit circle. We prove the following theo
rem: 

THEOREM 1. Let f (6) be periodic with period 27r, and suppose the 
numbers ank and bnk (not necessarily real) are given so that 

Sn(0) = 1- ]T (ank cos kO + bnk sin k$), 
2 &=i 

with the relation, for n=l, 2, • • • and for all 6, 

(1) I f(fi) - sn(d) | ^ M/nv+^p", 0 < a g 1, p > 1, 

where p is a non-negative integer and M is a constant. Then the function 

(2) F(z) s lim \cn0 + E (c»,-*2T* + cnhz
h) 

coincides with f (6) on the circle \z\ = 1, with 3 = cos 8+i sin 9, and F(z) 
is analytic in the annulus p > | s | > l / p and continuous in the corre
sponding closed region. For z\ and z2 on \z\ =p or 1/p we have* 

(3) \F™(zi) -F™fa)\ £L.\zi-z2\"- |log| »i — 221 h 

where /3 = 0 if a < 1, and @ = l if a = 1, and where L is a constant inde
pendent of Z\ and z2. 

* The notation F^(z) indicates the pth derivative of F(z)y if p>0, and the 
function F(z) itself for p = 0. Here and below, such derivatives on the boundaries of 
regions of analyticity are considered in the one-dimensional sense. 

• 
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Inequality (1) written for successive indices implies 

| sn+1(6) - sn(0) I ^ 2M/n*>+«^p" 

for all 8, an inequality which we write in the form 

| pn+i(z) - pn(z) | ^ 2M/n*+~"p», for | z\ = 1, 

where pn{%) is the expression in square brackets in (2), a polynomial 
in z and 1/z of degree n, equal to sn(0) on |JS| = 1 . An easily proved 
lemma* then yields 

I Pn+i{z) - pn(z) | ^ 2Mp/n*+«*-if for p ^ I * I ^ 1/p. 

In particular, on the two circles \z\ = p and \z\ = l /p we may write 

| F(z) - pn(z) | ^ 2Mp|"——- + , 1 W +1 + • • • ! < Afi/»*"". 

The function pn{z) (not necessarily real) is, on \z\ = p and on | z\ = 1/p» 
a trigonometric polynomial in 0 of order n with z=peie or z=p~leiB, 
so that by the results of de la Vallée Poussin f the function F(z) satis
fies on \z\ = p and | s | = l / p a condition TCW/A respect to 6 of form (3); 
hence (3) itself is fulfilled, f 

It is a corollary to our proof of Theorem 1 that the sequence sn(9), 
if defined off the circumference \z\ = 1 as the function pn(z), con
verges uniformly to F(z) in the closed annulus p ^ \z\ ^ 1 / p , with an 
error not greater than M\/nv+a. 

In the direction of the converse of Theorem 1 we prove the follow
ing theorem : 

THEOREM 2. Let the f unction F{z) be analytic in the annular region 
bounded by the circles \z\ = p > l and \z\ = l / p and continuous in the 
corresponding closed region, and let F(p)(z), p a non-negative integer, 
satisfy a Lipschitz condition^ of order a on \z\ ==p and \z\ = l / p . Let 
us set 

00 

(4) F{z)^ Y,ckz\ p > | * | > 1/p; 
k=-— oo 

* Walsh, Interpolation and Approximation by Rational Functions in the Complex 
Domain, American Mathematical Society Colloquium Publications, vol. 20, New York, 
1935, p. 259. 

t Leçons sur VApproximation, Paris, 1919, chap. 4. The results in question are 
equally valid for real and for complex valued functions. 

Î See for instance Walsh and Sewell, this Bulletin, vol. 43 (1937), pp. 557-563. 
§ Tha t is to say, let (3) be satisfied with /3 = 0. 
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then with the notation ak = Ck+c-k> bk = i(ck — c-.k), we have on \z\ = 1, 
with z = eid, the relation 

(S) F{eie) h X) 0* cos kO + bk sin k$) \\ S M/nv+<*pn, 

where M is a constant. 

In the usual proof of the validity of the Laurent development (4), 
it is established that we may write for p > | z | > l / p the equation 
F(z)=F1(z) + F2(z), where 

Fi(z) = £ ckz\ \z\ < p; F2(z) = £ <^*, | s | > 1/p. 

Under the present conditions on F(z), the function F2{z) is analytic 
on |z | =p , so that the function F£*> (z) = F(p)(z) = F2

(p) (z) is continu
ous on \z\ =p and satisfies on \z\ =p a Lipschitz condition of order a. 
Similarly the function F2

(p) (z) is continuous on \z\ = 1/p and satisfies 
on J ^ I = 1/p a Lipschitz condition of order a. 

By the continuity of Fi(z) on \z\ = p and of F2(z) on | s | = l / p , we 
may write 

1 /• Fi(t)dt 1 f F a ( 0 * 
c — I , k ^ 0; ck = I > k < 0; 

whence for | z\ <p, by the uniform convergence of the series involved, 
we have 

(6) 
n l r / °° zk \ 

£=0 ZWtJ \t\-p \ Jfc=w+1 t ^ / 

If P n ( 0 is an arbitrary polynomial in / of degree n, we have 

Pn(t)dt ƒ 
so that, for | JS| <p , (6) may be written 

= 0, k > n, 

(7) F,{z) - E c#* = - ^ f [FiW - Pn(0] ( £ ~ ) *• 
k=0 ZTTlJ \t\-p \ k=n + l t^V 

A consequence of the Lipschitz condition on 7<\(p) (z) on \z\ =p is 
that there exist* polynomials Pn(i) of respective degrees n with 

* J. Curtiss, this Bulletin, vol. 42 (1936), pp. 873-878. The proof is based on 
methods due to Bernstein, Jackson, and de la Vallée Poussin. 
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\F1(t) - Pn(t)\ S Mr/n»+\ |* | = P , 

where M' is independent of n and of t. Thus equation (7) yields 

Fi(*) - £ <*** ^ A f / 7 » p + t f P w , I ^ I = 1 , 

where ikfr/ is independent of n and of 2. A similar and similarly 
proved relation for F2(z) yields the inequality (5) and the theorem. 

A remark due to Sewell* concerning degree of convergence of 
Taylor developments applies to the degree of convergence of the 
sequenceYlk=ockZk to F\(z) on the circle | z\ =p, and also to the degree 
of convergence of the sequence ]C*^-i£*sfc to F2(z) on the circle 
\z\ = l /p , so that we obtain 

F{z) - £ ckz
k 

^ (M"' log w)/»*+«, for p è | « | è 1/P, 

where Min is independent of n and z. 
It is a matter of indifference whether in Theorem 1 we prove and 

in Theorem 2 assume that F^p)(z) is continuous merely on the circles 
\z\ = p and \z\ = l / p or that F^p)(z) is continuous in the closed region 
p è \z\ ^ 1 / p , for the one condition implies the other.f A similar re
mark applies to Theorems 3-6. 

3. Approximation on the segment — l ^ s ^ l . The analog of 
Theorem 1 is the following theorem : 

THEOREM 3. Let f{z) be defined on the segment —1^=3^1, and let, 
for n = l, 2, - • • , a polynomial Pn(z) in z of degree n exist such that 
on the segment — 1 ^ z ^ 1 

| f(z) - Pn(z) | S M/nv+«+lp«, p > 1, 0 < a S 1, 

where p is a non-negative integer. Then the function f(z), if suitably de
fined, is analytic throughout the interior of the ellipse y whose foci are 

— 1 and + 1 and whose semi-sum of axes is p ; moreover f{z) is continu
ous in the closed interior of y and on y satisfies the condition 

(8) | fM(Zl) - ƒ<*>(*,) | S L. | 2i - z21- | log \zl-z2\ K 

where /? = 0 if a < 1 and j3 = 1 if a = 1, and where L is a constant inde
pendent of z\ and z2. 

* This Bulletin, vol. 48 (1935), pp. 111-117, Theorem 4. 
t This follows by consideration of the functions Fi(z) and F2(z) from the results 

of Walsh and Sewell, loc. cit. 
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We map the s-plane onto the w-plane by the transformation 
z=(w+w~l)/2. Under this transformation the image in the w-plane 
of the segment — 1 ^zS 1 counted twice is the unit circle \w\ = 1, the 
image in the w-plane of y in the s-plane counted twice consists of the 
two circles \w\ =p and \w\ = l / p , and the image in the w-plane of 
the interior of y in the s-plane counted twice is the annular region 
p > | w\ > 1/p. The polynomial Pn(z) corresponds to a polynomial in w 
and 1/w of degree n; that is to say, considered as a function of w it 
is precisely of the form of the function pn(z) introduced in the proof 
of Theorem 1, with cnk = cn,-k. I t follows from Theorem 1 that the 
transform oîf(z) (considered as a function of w) defined in the annulus 
as the limit of the sequence Pn(z) (considered as a function of w) 
satisfies a condition of form (3) with respect to w on the circles 
\w\ = p and \w\ = l / p and is symmetric in w and 1/w. The function 

f(z), the transform in the s-plane of the limit in the w-plane of the 
sequence Pn(s) , is single-valued interior to 7, is obviously analytic 
interior to y except perhaps for — 1 ^ z ^ 1, and is analytic on that 
segment because continuous there in the two-dimensional sense. By 
the analyticity of the transformation z=(w+w~l)/2 on \w\ =p and 
I w\ = 1/p, inequality (8) follows, and the proof is complete. 

As a corollary to this proof we remark that the sequence Pn(z) it
self converges uniformly to f(z) on and within 7, with an error not 
greater than Mi/np+a. 

In the direction of the converse of Theorem 3, immediate applica
tion of Theorem 2 yields the following theorem : 

THEOREM 4. Let y denote the ellipse whose foci are —1 and + 1 and 
whose semi-sum of axes is p, let the function f {z) be analytic interior to y 
and continuous in the corresponding closed region, and letf(p)(z), p a 
non-negative integer, satisfy a Lipschitz condition of order a, (0 <a ^ 1), 
on 7. Then for n = l, 2, • • • there exists a polynomial Pn(z) of degree n 
in z such that \f{z)—Pn(z)\ ^M/np+apn, (— l ^ s ^ l ) , where M is a 
constant independent of n and z. 

Under the transformation z=(w+w~1)/2, the f unction ƒ (2) corre
sponds to a function of w which is analytic in the neighborhood of 
I w\ = 1 except perhaps on that circumference, continuous in the two-
dimensional sense at every point of | w \ = 1, and hence analytic on 
| w | = l and throughout the annulus p > | w | > l / p . The function 

f[(w+w~1)/2] is symmetric in w and 1/w, so that the corresponding 
Laurent polynomials used in the proof of Theorem 2 are in this case 
symmetric in w and 1/w and hence are polynomials in z; Theorem 4 
follows from Theorem 2. 
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It is not without interest to notice that the successive approximat
ing Laurent polynomials that here present themselves in the w-plane 
are of the îorm^kcsQck(w

k-\-w~k), where ck is independent of n1 so that 
the approximating polynomials Pn{%) of Theorem 4 are of the form 

n 

]T ckTk(z), 
A;=0 

where ck is independent of n, and where Tk(z)=wk+w~k is a poly
nomial of the set studied by Tschebycheff: TQ(Z)=2, T\(z)=2zy 

r 2 ( s ) ^ 4 s 2 — 2, r3(s) = 8s3 — 6z, - • • which are mutually orthogonal on 
the interval — 1 ^z^l with respect to the norm function (1 — z2)~112 

and are also orthogonal* on y and on every ellipse confocal with y 
with respect to the norm function | 1 — z2\ ~112. 

As in the proof of Theorem 2, we have, for z on and within y, the 
relation 

ƒ(*) ~ £ ckTk(z) S (M' log n)/nP+a, 

where M' is independent of n and z. The expansion ^2^ockTk(z) of 
ƒ (z) on y converges uniformly to ƒ (z) on 7 and hence is an expansion 
of the usual form in terms of orthogonal polynomials: 

Ck f I Tk(z) \2- I 1 - z2 h1 '2- I dz I = f / ( s ) f *(s) I 1 B f I r * ( s ) | 2 . I 1 - s 2 ! - 1 ' 2 . |<fe| = f ƒ(: 

Results analogous to Theorems 3 and 4 for the case that ƒ (s) is uni
formly bounded interior to 7 or is analytic interior to 7 with poles 
or certain other singularities on 7 are due to Bernstein f and to de la 
Vallée Poussin (op. cit., chaps. 8 and 9). 

4. Approximation to a periodic function on the axis of reals. A con-
formal transformation different from that used in Theorems 3 and 4 
will now give further results from Theorems 1 and 2. 

THEOREM 5. Let the f unction f (z) be periodic with period 2K, and let 
there exist trigonometric polynomials tn(z) of respective degrees n such 
that we have f or all real z = x+iy 

| ƒ(*) - tn{z) | ^ M/nv+«+lp", 0 < a S 1, P > 1, 

where p is a non-negative integer. Then the function f{z) can be analyti
cally extended so that it is analytic throughout the band \ y\ < log p, is 

* Walsh, this Bulletin, vol. 40 (1934), pp. 84-88. 
t Leçons sur les Propriétés Extrêmales, Paris, 1926, chap. 3. 
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continuous in the corresponding closed region, and on the lines y = ± log p 
satisfies condition (8). 

The transformation w = eiz carries the line y = 0 into the unit circle 
\w\ = 1, the band | y \ <log p into the annulus p > | w\ > 1 /p, the func
tion f{z) into a function analytic and single-valued in that annulus, 
and the trigonometric polynomial tn(z) on y = 0 into the trigonometric 
polynomial tn{d) on \w\ = 1 with w = eid. The hypothesis of Theorem 1 
is satisfied, and an inequality of form (3) on the circles \w\ =p and 
| ^ | = l / p leads to the conclusion of Theorem 5. 

The given sequence tn(z) can be expressed on ^ = 0 as a sequence of 
polynomials in w = eiz and 1/w, with z = x — 6: 

i i 
sin kz = (eikz — e~ikz) = (wk — w~k), 

2 2 
cos kz = \{eikz + e~ikz) = %(wk + w-k). 

These equations are then valid even if y is different from zero. 
I t follows from the proof of Theorem 1 that the sequence tn{z), 

expressed in trigonometric form, converges in the closed region 
1̂ 1 ^ log p, with an error not greater than Mi/np+a. 

THEOREM 6. Let the function f (z) be periodic with period 27r, letf(z) 
be analytic in the band \ y \ <log p, where z = x+iyy and continuous in the 
corresponding closed region, and let f(p)(z), p a non-negative integer, 
satisfy a Lipschitz condition of order a, ( 0 < a ^ l ) , on the lines 
y= ±log p. Then there exist trigonometric polynomials tn(z) of respec
tive degrees n such that we have for all real z 

where M is a constant independent of n and z. 

The detailed proof of Theorem 6 is readily supplied by the reader 
by use of the same transformation w = eiz and the method of proof 
of Theorem 4. It is of interest to note that the function tn(z) appears 
also for complex values of % as the sum of the first n + 1 terms of a 
series of the form 

1 * 
— ao + Z^ (au cos kz + bk sin kz). 
2 &=i 

As in Theorem 2, we have 

| ƒ(*) - *„(*) | ^ (M' log » ) / » P + « , for | y | g log p, 

where M' is independent of n and z. 
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From the orthogonality of the functions wk on \w\ = p it follows 
that the transformed functions eikz, £ = • • - , — 1 , 0 , 1, 2, • • • , form 
an orthogonal set on the line segment y= —log p, (0^x^27r ) , with 
respect to the norm function \dw/dz\ =\deiz/dz\ —e~y. This norm 
function is a nonvanishing constant on the segment and may there
fore be omitted. Thus 

ƒ
2x— ilogp 

eihz^l7'dx = 0, k 7* I, 
—i Iogp 

where k and I are integers, positive, negative, or zero. Of course this 
orthogonality condition holds on any interval x 0 ^x^Xo + 27r, 3, = 3;O, 
the respective limits of integration being Xo+iyo and Xo+2w-\-iyo. 

The set eikz is closed (with respect to the class of continuous func
tions) on the interval #o^#^#o+27r , y = y^ as is seen by transforma
tion to the w-plane. On every interval X0SX^XQ + 2T, y^yo, 
\yo\ ^ l o g p , the sequence 

I n n 

tn{z) = —~a0 + S (ak cos kz + bk sin kz) = ^ cke
ikz, 

^ k=l k=—n 

2ck = ak — ibk, 2c_/b = ak + ibk, 

is the sum of the first 2n+l terms of the uniformly convergent formal 
development on that interval of the function f(z) in terms of the 
orthogonal functions eikz, so that the coefficients are given by for
mulas of the usual type : 

g2kyo /» xo+2T+iyo ^_ 

c* = —— I eik~~*-f(z)-dz, 

where on y = y0 we have eikz = e~ik'z = e~kyo (cos kx — i sin kx). 
Analogs of Theorems 5 and 6 have been established by de la 

Vallée Poussin (op. cit., chaps. 8 and 9) for the case that f(z) is 
bounded for \y\ <log p or has poles or other singularities on the lines 
y = ±log p. 

There is an obvious discrepancy of unity in the exponents of n that 
appear in Theorems 1 and 2, in Theorems 3 and 4, and in Theorems 5 
and 6. This discrepancy is inherent in the nature of the problem, as is 
shown by examples that the writers will publish on another occasion. 
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