
DECOMPOSITION OF ELEMENTS IN ABELIAN GROUPS* 

RUFUS OLDENBURGER 

1. Introduction. Let G be an abelian group of elements g with 
operation + (sum), and unit element 0 (zero). We shall be concerned 
with the following property : 

PROPERTY Pn. There exist n distinct elements in G such that their sum 
vanishes. 

In the present paper we determine necessary and sufficient condi
tions for an abelian group to have the property Pw . The author first 
proved the validity of these conditions for fields, but, as noted by 
T. Nakayama, the operation X does not occur, so that the theory 
may be stated for a system of elements with only one operation + de
fined for these elements. Groups with the property Pn have useful 
algebraic applications.! 

One is naturally led to consider the decomposability of any given 
element of a group G into a sum of distinct elements of G. This prob
lem is treated in §3. 

I t is necessary in the treatment of decompositions of elements to 
distinguish only between nonzero elements of order 2, elements of 
order different from 2, and the zero element. 

2. Groups with property P n . A pair (h, k) of elements h, k in a 
group G satisfying 

h+ k = g 

is called a g-pair in G. If one or both of the elements h, k is zero, the 
pair (h, k) is called a null g-pair. 

An element q in G of order 2 (q+q = 0) will be said to be singular. 
The remaining elements of G are said to be nonsingular. 

* Presented to the Society, September 6, 1938. 
t Let the minimal number m(F) of a form F of degree r, with respect to a field 

K*, designate the smallest value of <r for which jPcan be written as a sum AiLir+ • • • 
+X(rL<r

r, where the A's are in K*, and the Us are linear forms with coefficients in K*, 
Let K denote a field whose characteristic and order are such that the symmetric 
g-way and (q 4-1) -way matrices of the forms Q and QL of degree q and (g+1), re
spectively, are unique, the coefficients being in K. We can prove that if K has the 
property Pq+i, the following inequality is true: 

MQL) ^(q + l)m(Q), 
where the m's denote minimal numbers with respect to K. 
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We shall use the following obvious lemmas in the development of 
this paper: 

LEMMA 1. The nonsingular elements of an abelian group may be 
grouped into distinct 0-pairs. 

LEMMA 2. The singular elements of an abelian group G may be 
grouped into distinct q-pairs for each nonvanishing singular q in G. 

LEMMA 3. The four elements of two distinct 0-pairs of nonsingular 
elements in an abelian group are mutually distinct. 

LEMMA 4. The four elements in two distinct q-pairs, (#^0) , of singu
lar elements in an abelian group are mutually distinct. 

I t is to be observed that the null g-pair is (0, q). 
If there are two or more singular elements in an abelian group G, 

these elements form a subgroup of G, which we shall call the singular 
subgroup G' of G. If G = G', the group G is said to be singular. 

If & = g i + • ' * ~\-gny where gi, - - • , gn are in G, we shall say that 
(gi, ' ' ' > gn) is an n-representation of g. If gi, • • • , gn are distinct we 
shall call the representation proper. 

We shall prove the following theorem where it is naturally under
stood tha t the order of the group is not less than n : 

THEOREM 1. An abelian group G possesses Property Pn except in the 
following cases: 

(a) n = 2, and G is singular ; 
(b) G is singular, of finite order m, and n = m — 2; 
(c) G possesses a singular subgroup of order 2, G is of finite order, 

and n equals the order ofG. 

We let G be singular. If for a pair of elements a, b 'm G we have 
a + b = 0, then a = b; whence it follows that G does not possess Prop
erty Pi. In case (b), m^4. The elements of G may be paired into an 
even number of distinct g-pairs for any given nonzero element q in G, 
whence the sum of all of the elements in G is zero. If the sum of m — 2 
distinct elements of G vanishes, G possesses Property P2 , which has 
been proved to be impossible. 

If part (c) of Theorem 1 is satisfied, G possesses a singular sub
group G' of elements 0, q. By Lemma 1 the sum of elements of G 
not contained in G' is zero; whence the sum of all elements in G is q. 
Thus Property Pn does not hold in case (c). 

I t remains to show that if (a), (b), and (c) are not satisfied by G 
and n, the group G possesses Property Pn. 
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I t is to be remarked that if G is infinite and contains at least one 
nonsingular element, it contains an infinite number of such elements. 

Let d denote the number of nonsingular elements in G, where 
cc^d^tO. Assume d>0, and n^d. If n = 2k, we obtain a proper 
^-representation of zero by taking k 0-pairs of nonsingular elements ; 
if n = 2k + l, we adjoin 0 to the k 0-pairs just mentioned. 

We assume now that d is finite and that n = d+s, where in turn 
s = 4:k+i> {1 = 1, 2, 3, 4, &^0). The g r o u p s now has a singular sub
group G' whose order we shall denote by m', where m' is finite. If 
i = l, we obtain a proper ^-representation of zero by adjoining zero 
to the sum of the nonsingular elements of G, and the elements in 2k 
distinct non-null g-pairs, (#5^0), of G'. If i = 3, we adjoin q to the 
elements in (2& + 1) non-null g-pairs of singular elements, (#7^0), and 
the nonsingular elements of G. If i = 4, we adjoin (2& + 2) g-pairs, 
(g^O), of singular elements to the nonsingular elements of G. 

Let i = 2, and k = 0. Since it is assumed that (a) is not satisfied, we 
have d>0. Since (c) is not satisfied, m!^4. We adjoin two distinct 
g-pairs, (#5^0), from G' to (d — 2)/2 distinct 0-pairs of nonsingular ele
ments. I t remains to take i = 2, k = l. We can now write s = 4fe'+6, 
where & '^0 . Since the order m' of G' is finite, it is even. We assume 
that S9ém, — 2. Since s is even, s^tn' — 4; whence 

(1) m' = 4k' + 10. 

Actually m'^4k' + 12f but this fact is not needed. I t follows from (1) 
that the order m' of G' is at least 24. Select from G' three distinct non-
null g-pairs, (g^O), 

(2) (?i, Ç2), (?s, £4), (?5, qe) 

such that qi+qs = q5, whence 

(3) ?i + ?3 + £5 = 0. 

I t is readily seen from —qi = qi that qi+qz is different from the ele
ments in the pairs (0, q), (gi, g2), (#3, #4); so q& actually occurs in a 
g-pair distinct from these. Let (g7, q$) be a g-pair in G' which is non-
null and distinct from (2). Then 

(4) q + q7 + qs = 0. 

By (3) and (4) we have 

(5) q + qi + qz + gB + qi + qs = 0. 

We obtain a proper (d+4fc / + 6)-representation of zero by adjoining 
to the sum exhibited in (5) the nonsingular elements of G and the 
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elements of 2k' distinct #-pairs in G' which are non-null and different 
from the pairs (2) and (g7, <Zs). That this is possible follows from (1) 
and the fact that the pairs (2), (g7, g8), and (0, q) contain exactly 10 
elements. 

If, finally, i — 2 and s = m' — 2, since the conditions of (b) are as
sumed to be not satisfied, there exist nonsingular elements in G} 

whence d>0. We have m =41. We obtain a proper ^-representation 
of 0 by taking all elements of G except one 0-pair of nonsingular ele
ments. 

COROLLARY 1. An abelian group G of infinite order possesses the 
Property Pni except when G is singular and n = 2. 

COROLLARY 2. An abelian group G with no singular subgroup pos
sesses Property Pnfor each n. 

COROLLARY 3. A field of characteristic p and order m {finite or infi
nite) possesses the Property Pn if and only if p9^2y or if p = 2, w?^2, 
m — 2. 

COROLLARY 4. The sum of the elements of a finite abelian group G is 
zero except when G contains a singular subgroup G' of order 2 ; in the 
latter case it is equal to the nonzero element in G'. 

COROLLARY 5. The sum of elements of a finite field K of characteristic 
p and order m is zero except when p = m = 2. 

One can prove that the sum of the elements of a field K with char
acteristic different from 2 is zero rather simply and directly in an
other manner. Let qi, • • • , qm denote the distinct elements of K. Let 
<Zi+ • • • +<Zm = <Z, q being in K. The set — #i, • • • , — qm is obviously 
the same as the set gi, • • • , qm- Hence q = 0. 

3. Decomposability of nonzero elements of abelian groups. I t will 
appear from the development of this section that the existence of a 
proper n-representation of a nonsingular element of an abelian group G 
implies the existence of a proper n-representation of each nonsingular 
element of G. Similarly, the existence of a proper ^-representation of a 
nonzero singular element of G implies the existence of a proper n-rep-
resentation for each such element of G. We therefore make the follow
ing definitions : 

PROPERTY P n ' . There exists a proper n-representation of each non-
singular element in G. 

PROPERTY P n " . There exists a proper n-representation of each non
zero singular element in G. 



156 RUFUS OLDENBURGER [February 

THEOREM 2. An abelian group G containing nonsingular elements 
possesses the property Pn' unless n equals the order of the group. 

By Corollary 4 of §2, if n is the order of the group, there is no 
proper ^-representation of a nonsingular element in G. In what fol
lows we therefore assume that n is less than the order of the group. 

As above, we let d denote the number of nonsingular elements of G, 
where now <*> ^ d ^ 0. Assume n ^ d. We obtain a proper w-representa-
tion of a nonsingular element g by taking a sufficient number of 
0-pairs of nonsingular elements different from (g, —g) and adjoining g 
or 0, g according as n is odd or even. 

We assume now that d is finite, and n = d+s, (s>0). Let m denote 
the order of the singular subgroup G'. Since d is finite, m is finite. 
Let the nonsingular elements of G be denoted by gi, • • • , gd- Since 
s <m, there exist at least a set of distinct elements gi, • • • , q8+\ in G'. 
For some element qa in G' we have the equality 

(6) gi + • • • + gd + qi + • • • + qs+i = qa* 

The equality 

qa + x = g, 

where g is nonsingular, is satisfied for a nonsingular element gi in G. 
There is a value of j such that gj = — gt-. Adding g»- to both sides of (6) 
we obtain the proper (d+s) -representation of g: 

(gi> * * * y gi~u gi+h ' ' ' > gd, qi, • • - , q*+i) • 

THEOREM 3. An abelian group G containing non-null singular ele
ments possesses the property Pn" unless n is the order of G and the 
order of the singular subgroup G' of G is greater than 2. 

By Corollary 4, if G is finite of order n, there is a proper w-represen-
tation of a non-null singular element of G if and only if the singular 
subgroup G ' of G is of order 2. 

In what follows we assume that n is less than the order of G. The 
group G contains a singular subgroup G' of order m, where m ^ 2. Let 
the order of G be d+m, where <*> ^ d ^ O . If n^d, we obtain a proper 
^-representation of a nonzero singular element q by choosing ele
ments from the pair (0, g), and 0-pairs of nonsingular elements. If 
n — d+4rk+iy where &^0 and i = l, 2, or 3, we obtain a proper ^-rep
resentation of q by taking all nonsingular elements of G, a sufficient 
number of non-null g-pairs from G', and elements from the null pair 
(0, q). I t remains to consider the case where n = d+s, s = 4&+4. Since 
m = 4/, and s^m—4, we have 
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(7) U ^ m - 8. 

We choose distinct non-null g-pairs of elements of G' given by 

(8) (?i, ?*), («a, <fc), (?B, ?e) 

so that gi+g3 = <Z5. By (7) there are a t least 2k distinct non-null g-
pairs Pi , • • • , PM in G' different from (8). We obtain a proper w-rep-
resentation of g by adding g, gi, g3, gs to the elements in Pi, • • • , P2k 
and the nonsingular elements of G. 

4. Construction of representations. We used very special proper 
representations in §§2 and 3 to prove the existence of proper repre
sentations. In the present section we show how, under very general 
circumstances, proper representations of a given element g may be 
obtained from proper representations of other elements in the group. 

THEOREM 4. Let S be a set of n distinct elements in an abelian group 
G, and let h denote the sum of the elements in S. Let g be an element of G 
distinct from h, and let p be the order of k, where k=g — h. The element g 
has a proper n-representation P containing at least n — 1 elements of S 
unless pT^O and the elements of S can be grouped into cosets of the cyclic 
subgroup K= [0, k, 2k, • • • , (p-l)k]. 

Let gi, • • • , gn be n distinct elements of G whose sum is h. If for 
some i we have 

gt+ k** gi,- ' • > gi-h £f+i, • • • , gny 

the representation P{ = (gh • • • , g^u gi+k, gi+u • • • , gn) is a proper 
^-representation of g. Assume therefore that for each i we have gi+k 
equal to one of the quantities gi, • • • , gt-_i, g t+i, • • - , gn. Since giT^gj 
for iy*j, the set (gi+k, • • • , gn + k) is equal to the set (gi, • • • , gn). 
We can evidently order the subscripts on the g's and choose r, s, 
so that 

(9) gr + k = gi, gi + k = «<+!, i = 1, • • • , r - 1, 

and 

gr+8 + k = gH-i, gi + k = g /+i, j = r + 1, • • • , r + s - 1, 

and so on. Adding the equations (9) we obtain 

(10) igi + rk^t, gi. 
< - l 1 = 1 

If p does not divide r, the formula (10) implies that & = 0, con
tradicting k^O. Hence r, s, and so on, are each divisible by p, so 
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that p is not zero. Let r = qp where g > l . By (9) gi+i = gi+ik for 
i = l, 2, • • • , qp-1. Hence gp+i = gi+£& = gi, contradicting gi^gp+i. 
I t follows that the g's may be grouped into cosets of K, whence the 
theorem is proved. 

COROLLARY 6. Let S be a set of n distinct elements gi, ' • • , gn of an 
abelian group G, where the elements of S are not the elements comprising 
cosets of a cyclic subgroup of G. Let the sum of the elements in S be de
noted by h. For each element g in G there is a proper representation 
(gu ' ' ' y gi-i, gi+k, gi+i, • • • , gn) of g where k=g — h. 
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THE MAXIMUM NUMBER OF DISTINCT CONTACTS 
OF TWO ALGEBRAIC SURFACES* 

T. R. HOLLCROFT 

1. Introduction. For more than half a century, it has been known 
tha t the maximum number of distinct contacts of two algebraic sur
faces whose intersection curve is irreducible is the genus of that curve.f 

The number of contacts of two surfaces whose entire intersection 
curve consists of straight lines has been found.% This is the maximum 
number of contacts of two surfaces of given orders. 

The purpose of this paper is to obtain the maximum number of 
distinct contacts of two algebraic surfaces when the intersection curve 
consists of any given number of components of given orders and 
genera. Cases are treated in which the two surfaces have singular 
points or singular curves in common. 

2. Method. From any point of Ss not on the developable of C, a 
space curve C with h apparent double points projects into a plane 
curve C' with h nodes. Since C' may have p additional nodes, where p 
is the genus of both C and C", the space curve C may have p nodes. 
The necessary and sufficient condition for the two surfaces to have a 
contact is for C to have a node. § 

If C is irreducible and is the complete intersection of two surfaces 
M and N, the maximum number of contacts of M and N is the genus 

* Presented to the Society, December 28, 1937. 
t E. Pascal, Repertorium der höheren Mathematik, vol. 2 (1902), p. 225. In a 

later supplementary volume of the Repertorium (vol. 22 (1922), pp. 653-656), more 
than two pages are devoted to the topic, "Contacts of two surfaces/' but the problem 
of this paper is not treated. 

| Encyklopâdie der mathematischen Wissenschaften, vol.3, C, 9, (1926), p. 1277. 
§ E. Pascal, Repertorium der höheren Mathematik, vol. 22 (1922), p. 654. 


