A CHARACTERIZATION OF DEDEKIND STRUCTURES*

MORGAN WARD

If Σ is a Dedekind structure,[†] then for any two elements A and B of Σ , the quotient structures [A, B]/A and B/(A, B) are isomorphic. (Dedekind [2], Ore [3].) I prove here a converse result.

THEOREM. Let Σ be a structure in which for every pair of elements A and B, the quotient structures [A, B]/A and B/(A, B) are isomorphic. Then if either the ascending or descending chain condition holds in Σ , the structure is Dedekindian.

This result is comparatively trivial if *both* the ascending and descending chain conditions hold. That some sort of chain condition is necessary may be seen by a simple example. Consider a structure Σ with an all element O_0 and a unit element E_0 built up out of three ordered structures Σ_1 , Σ_2 , Σ_3 meeting only at O_0 and E_0 , so that if $S_u \varepsilon \Sigma_u$, then

$$(S_u, S_v) = E_0, \qquad [S_u, S_v] = O_0$$

for $u, v = 1, 2, 3, u \neq v$. Then if each Σ_i is a series of the type of the real numbers in the closed interval 0, 1, the quotient structures of any pair $[S_u, S_v]/S_u, S_v/(S_u, S_v)$ are obviously isomorphic. But Σ is clearly non-Dedekindian.

The theorem is of some interest in view of the generalizations Ore has given of his decomposition theorems in Ore [4].

It suffices to prove the result under the hypothesis that the descending chain axiom holds in Σ (Ore [3, p. 410]). We formulate this axiom as follows:

(β) If for any two elements A and B of Σ ,

$$A \supset X_1 \supset X_2 \supset X_3 \supset \cdots \supset B$$

for an infinity of X_i in Σ , all the X_i are equal from a certain point on.

Our proof rests upon several lemmas which we collect here.

LEMMA 1. (Dedekind [2].) Σ is a Dedekind structure if and only if Σ contains no substructure Σ_0 of order five which is non-Dedekindian.

^{*} Presented to the Society, April 15, 1939.

[†] We use the notation and terminology of Ore's fundamental paper, Ore [3], with the following two exceptions. (i) We write $A \supset B$, $B \subset A$ for Ore's $A \ge B$, $B \le A$. (ii) If A is prime over B (Ore [3, p. 411]), we shall say "A covers B" or "B is covered by A" (Birkhoff [1]) and write A > B or B < A.

The type of substructure in question is well known; its diagram is given in the figure. Since we utilize such substructures frequently in our proof, we shall introduce the notation $\{D, A, B, C, M\}$ for Σ_0 , writing the all element D and unit element M in the first and last

places in the symbol while the elements A and B where $A \supset B$ occupy the second and third places.

LEMMA 2. (Ore [3].) If (β) holds in the structure Σ , then every set of elements of Σ which divide a fixed element A contains at least one minimal element dividing no other element of the set.

LEMMA 3. If (β) holds in the structure Σ , then for any two distinct elements A and C of Σ such that C divides A, there exists an element B such that C divides B and B covers A.

For we need only pick a minimal element in the subset of all elements X such that $C \supset X \supset A$, $X \neq A$.

The following lemma is obvious:

LEMMA 4. Let Σ be a structure in which

(
$$\epsilon$$
) $[A, B]/A \cong B/(A, B)$

for every A, B of Σ . Then [A, B] covers A if and only if B covers (A, B).

LEMMA 5. Let Σ be a structure in which (ϵ) holds. Then if A covers B and M is any other element of Σ , either [M, A] equals [M, B] or [M, A] covers [M, B].

For clearly $[M, A] \supset [M, B]$. Since $A \supset (A, [M, B]) \supset B$ and A > B, either (A, [M, B]) = A or (A, [M, B]) = B. If (A, [M, B]) = A, then $[M, B] \supset A \supset [M, A]$, so that [M, B] = [M, A]. If (A, [M, B]) = B, then A > (A, [M, B]). Hence by Lemma 4, [A, [M, B]] > [M, B]. But since $A \supset B$,

$$[A, [M, B]] = [M, A].$$

Our final lemma is the dual of Lemma 5.

LEMMA 6. Let Σ be a structure in which (ϵ) holds. Then if A covers B and M is any other element of Σ , either (M, A) equals (M, B) or (M, A) covers (M, B).

We shall prove our theorem indirectly. Assume that conditions (β) and (ϵ) hold in the structure Σ , but that Σ is non-Dedekindian. Then by Lemma 1, Σ contains a non-Dedekindian substructure

$$\Sigma_0 = \{D, A, B, C, M\}$$

of order five.*

We may assume that A covers B. For by Lemma 3, there exists an element N of Σ such that $A \supset N$, N > B. Thus

$$[A, C] \supset [N, C] \supset [B, C], \qquad (A, C) \supset (N, C) \supset (B, C);$$

that is, [N, C] = D, (N, C) = M. Hence $\{D, N, B, C, M\}$ is a non-Dedekindian substructure where N > B.

We assume henceforth that A covers B. Since [A, C] = D, (A, C) = M, and [B, C] = D, (B, C) = M, $D/C \cong A/M$, and $D/C \cong B/M$ by (ϵ). Hence $A/M \cong B/M$. But B lies in A/M and A > B. Since A corresponds to B under the isomorphism, there exists an element in B/M covered by B. Denote it by B_1 . Then

$$B > B_1 \supset M.$$

Since $B \supset B_1 \supset M$, $(B, C) \supset (B_1, C) \supset (M, C)$ or $(B_1, C) = M$. Consider next the union $D_1 = [B_1, C]$. Since $B > B_1$, by Lemma 5 either $[B, C] = [B_1, C]$ or $[B, C] > [B_1, C]$; that is, either $D = D_1$ or $D > D_1$.

If $D = D_1$, then on writing A_1 for B, we obtain a non-Dedekindian substructure $\{D_1, A_1, B_1, C, M\}$ in which $A_1 > B_1$.

Now assume that $D > D_1$. Clearly $[A, D_1] = [B, D_1] = D$. Consider the crosscut (B, D_1) . Since $B > B_1$, by Lemma 6, either $(B, D_1) = (B_1, D_1)$ or $(B, D_1) > (B_1, D_1)$. That is, since $B \supset (B, D_1)$ and $D_1 \supset B_1$, either $(B, D_1) = B_1$ or $(B, D_1) = B$. We must have $(B, D_1) = B_1$. For if $(B, D_1) = B$, then $D_1 \supset B$. Since $D_1 \supset C$, we would have $D_1 \supset [B, C]$, $D_1 = D$, contrary to the assumption $D > D_1$.

Consider next the crosscut $A_1 = (A, D_1)$. Since A > B, by Lemma 5 either $(A, D_1) = (B, D_1)$ or $(A, D_1) > (B, D_1)$; that is, either $A_1 = B_1$ or $A_1 > B_1$. We must have $A_1 > B_1$. For if $A_1 = B_1$, then $\{D, A, B, D_1, B_1\}$ is a non-Dedekindian substructure. But since $[A, D_1] = D$ and (A, D_1) $= B_1$, by (ϵ) $A/B_1 \cong D/D_1$. This isomorphism is impossible, for $A \supset B > B_1$ while $D > D_1$.

Finally, since $A \supset A_1 \supset C$ and $B \supset B_1 \supset C$, $(A_1, C) = (B_1, C) = M$

^{*} The reader will find a structure diagram helpful in following the argument.

while $[A_1, C] = [B_1, C] = D_1$. Thus $\{D_1, A_1, B_1, C, M\}$ is a non-Dedekindian substructure of Σ in which $A_1 > B_1$.

We now replace Σ_0 in either case by $\Sigma_1 = \{D_1, A_1, B_1, C, M\}$ and obtain a non-Dedekindian substructure $\Sigma_2 = \{D_2, A_2, B_2, C, M\}$ where $A_2 > B_2$ and

$$(2) B_1 > B_2 \supset M.$$

On repeating this reasoning, and combining (1), (2), \cdots we obtain a chain

$$B > B_1 > B_2 > B_3 > \cdots \Rightarrow M$$

of indefinite length in which all B_i are distinct, contradicting (β).

References

1. G. Birkhoff, On the combination of sub-algebras, Proceedings of the Cambridge Philosophical Society, vol. 29 (1933), pp. 441-464.

2. R. Dedekind, Über die von drei Moduln erzeugte Dualgruppe, Werke, vol. 2, pp. 371-403.

3. O. Ore, On the foundation of abstract algebra, I, Annals of Mathematics, (2), vol. 36 (1935), pp. 406-437.

4. ——, On the theorem of Jordon-Hölder, Transactions of this Society, vol. 41 (1937), pp. 266–273.

CALIFORNIA INSTITUTE OF TECHNOLOGY