
ON THE COMPUTATION OF THE SECOND DIFFERENCES 
OF THE Si(«), Ei(*)f AND Ci(«) FUNCTIONS* 

A. N. LOWAN 

In the course of the computation of the functionsf 

ƒ' x sin a " x2k+1 

da = Z ( - 1)* ' 
o a to (2* + l)(2* + l ) ! 

/

x QQg OL \ °° X^^ 

da = 7 + _log.(*4) + D ( - 1)*———, 
-oo oc 4 k=i 2k'{2k)\ 

(3) Ei(x)= f*—da = y+ ^loge(x*)+f:-^, 
J -oo a 4 k=i k - k\ 

it was felt advisable to precompute the second differences for the 
above functions. These second differences are of use in the Everett 
interpolation formula and may also be used as a check of the accuracy 
of the computed value. The object of this paper is to describe the 
method which was developed for the independent evaluation of the 
above second differences. 

Let <f)(x) stand for any of the three functions under consideration. 
Consider the expression 

R(x) = [<t>(% + h) + </>0 - A) - 2<t>{x)] 
(4) ^ 

-j[<l>'(x+h)-<j>'(x-h)], 

where the first expression in brackets is the second difference to be 
evaluated. 

Substituting for 0(x+fe), <j>{x — h), <f>r{x-\-h), and <t>'(x — h) their 
Taylor expansions, we get 

— h* °° r 2 1 "1 

(5) «,) - — •»(.) + £[— -gj-^v-M, 
whence 

* Presented to the Society, October 29, 1938. 
t This work is done by the New York City Works Progress Administration Proj

ect on the Computation of Mathematical Tables, under the sponsorship of Dr. 
Lyman J. Briggs, Director of the National Bureau of Standards. The author wishes 
to express his appreciation to the W.P.A. and to the Sponsor of this Project for per
mission to publish these results. 
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h* °° 2 k — 2 
(6) | R(x) | < - 1 *<«>(*) | + Z -TTTT * " I <*>(2*>(*) I, 

12 kaZ (2 k) I 
and a fortiori 

h4 °° h2k 

(6') | R(x) | < - {*<«(*)} + Z 777 777 {*<">(*)} -
12 fc=3 (2# — 1)! 

where, in general, the expression {</>(2k)(x)} is an upper bound of the 
modulus of the 2&th derivative of <£(#). We shall have a similar in
equality for each one of the functions under consideration. 

We proceed to obtain upper bounds for <£(2fc)(#). 

Case of the function Ei(#). In this case 

d2k d2k~l / ex\ 
(7) E i (* )= (— ). 

dx2k dx2k~l \xj 
Since l/x=f"e~xtdt for x>0, we can write ex/x=f"exa~t)dt, and there
fore 

d2k~* 
\2k-lp-xtfH 

dx2k' 
(8) 

1 / ex\ f°° 

ƒ» 1 • » oo 

(/ - \)2k~le-xtdt - ex \ (/ - l)2k~le-xtdt. 
o ^ î Consider the first integral of (7). Since for x>0 and l > 0 w e have 

e-xt<l, it follows that 

(9) f (/ - l)2k~h-xtdt < f (t - l ) 2 * - 1 ^ = — • 
•J o J o 2# 

Consider now the second integral of (7). If we make the substitu
tion / —1=77, we get 

ƒ• 00 /» 00 e~~x(2k — 1 ) ' 
(/ - ïy^e-^dt = e~* I n2k~le-xUy) = • 

1 J 0 #2* 

In view of (9) and (10), (8) yields 

( d2k ) ex 

(11) ^ Ei(*)> = — 
Ua?" ƒ 2& 

d2* ) ^ (2k - 1)! 

2k x 

Thus, for the function Ei(x), (6') becomes 

. . 1 / hy ex • A2* / e* ( 2 * - l ) ! \ 
(12) LR(X) <—( — ) + — S (— + - -). 

J ' W | 2 W 48 w ( 2 * - l ) ! \ 2 * *2* / 

file:///2k-lp-xtfH
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The three functions under consideration are being computed in the 
range 0 < x < 2 , at intervals Â = 10~4, by adding an appropriate num
ber of terms in the expansions (1), (2), and (3), each term being com
puted to 12 decimals, and rounding the sum to nine places of decimals. 

From (12) it can be easily shown that for x> 0.1, and h = 10~4, the 
sum of the terms beyond the first is of an order of magnitude not ex
ceeding 10~16 and can therefore not affect the twelfth place of Ei(#). 
Thus (60 may be written 

1 / h\4 

i «(*) I < — ( — I or | JR(*) | < 5 X lO"13. 
2 \x/ 

We therefore reach the conclusion that the second difference of the 
function Ei(x) must agree in its 12 places of decimals with the value of 

pX-\-h pX—h / ex+h ex~h \ 

\x + h x — h/ 2 

Case of the function Si(#). In this case we have 

d2k d2k-l /S[nx\ 

(13) Si(a) = ( ). 
dx2k dx2k~l \ x ) 

Since 
sin x 

cos xtdt* ƒ' 
J o 

the preceding equation yields 

(14) 

or 

(14') 

dik 1 Cl 

Si(a) < I t™-11 sin xt 
dx™ \ J 0 ' ' 

d2k \ C1 1 
Si(x) < tik~Ht = — 

dx2" J 0 2* 
Thus, in the case of the Si(#) function, the inequality (6') becomes 

h\ oo L2k 

(15) l ^ ) | < T ^ + Z 
48 tU (2*)! 

For h = 10~4 the second member of (15) is of the order of 10~17. We 
therefore reach the conclusion that, for the entire range of x under 
consideration, the second difference of the function Si(x) must agree 
in its twelve decimal places with the values of 
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h fsin (x + h) sin (x — h)~ 

1 2 L x + h x — h 

Case of the function Ci(x). In this case we have 

d2k d2k-i / co saA 
(16) Ci(*) = ( ) . 

dx2k dx2k~l \ x / 

Since 

cos x 

dx u o «^o 

we ultimately get 

/

• 00 • » 1 

e~xtdt — I sin x/d/, 
o J o 

(17) 
dik \ rK rl (2*-i)i i Ci(.r) < f t2k-h-xldt + f Z2*-1^ = ' 

\ J o Jo dx2k \ Jo Jo x2k 2k 

Thus, in the case of the Ci(#) function, the inequality (60 becomes 

, , 1 / hy h* " / 1 1 \ 
(18) \R(x)\ < — ( — ) + — + Z ( + I*2*-

J ' W l 2 \ x / ^ 4 8 £ ï \ * 2 * (2*) ! / 

As in the case of the Ei(#) function (and for similar reasons), we 
reach the concludion that for #>0 .1 and & = 10~4, the second differ
ence of the function Ci(x) must agree in its first 12 places of decimals 
with the values of 

h fcos (x + h) cos (x — h) h ["cos (x + h) cos (x — h)~\ 

2 \_ x -\- h x — h j 

It is conceivable that if the second differences of the functions un
der consideration are computed for arguments separated by some 
suitable interval H> the second differences for some intermediate ar
guments will be obtainable by linear interpolation to a high degree 
of accuracy. 

Let A2<j)(x) designate the second difference of any of the functions 
under consideration and E(x) the error in the value obtained by linear 
interpolation between the arguments x and x+h. Then 

(19) E(x + pH) = (1 - p)&xt>(x) + pA2<l>(x + H) - A2<K* + pH), 

where 0<p<l. 
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Replacing the 2nd and 3rd terms by their Taylor expansions, we 
get 

H2 Hz 

E(x + pH)= — (p- p2)ài'(x) +-^(P~ PWK*) + • • • 
(20) 

+ _ l ( # - . r ) A 2 ( n ) W + . . . # 

n\ 
But 

A2(t>(x) = <l>(x - h) + 4>(x + h) - 200) 

(21) A4 

- w . ) + ï ï , « . w + . . . , *.„>-.. 
Substituting (21) in (20), we get 

H*h* H*h2 

E(x + PH)=—(p- p2)^\x) + —«<*>(*) + • • • . 

If we substitute for (p — p2) the maximum value | , and replace 
(p-"pz)f (p —p4), • • • by their upper bound 1, we get 

10~8#2 10~"8273 

(22) | E(x + pH)\< —— {^(x)} + — — {*<5)(*)} + • • • . 
8 6 

If we assume the condition | E(x+pH) \ < 10~ u /2 , and arbitrarily set 
i7=10~2 , the above inequality will yield lower limits of the argu
ment x, above which the second differences may be computed at in
tervals of 10~2, the second differences for intermediate arguments 
being obtained by linear interpolation accurately to within 10~u/2. 
Thus, in the case of the function Ei(#), the evaluation of the second 
member of (22) leads to the conclusion that if #>0 .7 , then 
\E(x+pH)\ <3X10~1 2 . I t thus suffices to compute the second 
differences at intervals of 0.0100, in the manner described in the 
first part of this paper. 

Similarly, if we put H= 10~2/2, the evaluation of the second mem
ber of (22) leads to the result that if x>0 .5 , then \E(x+pH)\ 
<3X10" 1 2 . 

Thus, in the interval 0.5 <x <0.7, it suffices to compute the second 
differences at intervals of 0.0050. 

Entirely similar results are obtained in the case of the Ci(x) func
tion. Finally, in the case of the Si(x) function, we reach the conclusion 
that over the entire range of the argument x, it suffices to compute 
the second differences at intervals 0.0100. 
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The method here described is based on the suggestions made by 
Mr. Frederick King. These suggestions have led to the evaluation of 
R(x) as a starting point of the subsequent discussion. 

NEW YORK CITY 

ALL INTEGERS EXCEPT 23 AND 239 ARE SUMS 
OF EIGHT CUBES 

L. E. DICKSON 

Summary. In 1770 Waring stated that every positive integer is a 
sum of nine integral nonnegative cubes. The first proof is due to 
Wieferich.* I shall prove the following new result. 

THEOREM. Every positive integer other than 23 and 239 is a sum of 
eight integral nonnegative cubes. 

Five lemmas are required. 

LEMMA 1. Every integer greater than or equal to 2336 D is a sum of 
eight cubes if D = 14.0029682, or more generally if D=d, where\ 

/ 2 4 \ 3 

d> 1 4 + ( ), d S 14.1 . 

The algebraic part of Wieferich's proof holds for all integers ex
ceeding 2J billion. The fact that all smaller integers are sums of nine 
cubes was proved by use of Table I. To prove my theorem, I shall 
need also the new Tables II and I I I . 

Table I gives, for each positive integer N^ 40,000, the least number 
m such that N is a sum of m cubes. 

I t was computed by R. D. von SterneckJ by adding all cubes to 

* His errors are avoided in the much simpler proof by the writer, Transactions of 
this Society, vol. 30 (1928), pp. 1-18. On page 16 is proved a generalization of Lan
dau's result that all sufficiently large numbers are sums of eight cubes. 

t The proof is essentially like that given for d = 14.1 by W. S. Baer, BeitrUge zum 
Waringschen Problem, Dissertation, Göttingen, 1913. 

% Sitzungsberichte der Akademie der Wissenschaften, Vienna, lia, vol. 112 
(1903), pp. 1627-1666. 


