
A SUFFICIENT CONDITION FOR CESÀRO 
SUMMABILITY* 

H. L. GARABEDIAN 

1. Introduction. The principal object of this paper is to establish 
the following theorem. 

THEOREM. The series ]Cn=o(~~l)nan ^s exactly summable^ (C, k), 
(k = 1, 2, 3, • • • ), to the value^2lZlAna0/2

n+1 provided that 

(1) A*0O = O, A ^ a o ^ O , * è * ^ l . 

The convergence of the series X}n~oAn#o/2w+1 implies that the given 
series is summable (E, 1).% Moreover, it is known that summability 
(E, 1) is consistent with summability (C, k). However, neither 
method of summability includes the other. Thus, we may write a 
corollary to the stated theorem. 

COROLLARY. The class of series^2n=o( — l)nanfor which condition (1) 
is fulfilled is summable by both the (E, 1) and the (C, k) methods of sum
mation. 

2. Lemmas. The proof of the theorem involves the following lem
mas. 

LEMMA 1. If Cn,k denotes the ordinary binomial coefficient, then 

Cn+k-i,ic = Cn+k+i-i,k+i — Cn+ft-t.fc+i, ^ §= 1; i = 0, 1, 2, • • • , n. 

The simplicity of the proof of this lemma justifies its omission. 

LEMMA 2. The expression for the ith difference of a product uv in 
terms of differences of u alone and v alone is given by the formula^ 

(2) A%z;M = u,<+iA% + Ct.iA^+^iA*"1^ + • • • + d^v^Up. 

This formula is clearly the analogue of Leibnitz' formula for the ith 

* Presented to the Society, December 29, 1938. 
t A series is said to be exactly summable (C, k) provided that it is summable 

(C, k) but is not summable (C, k — 1). 
Î This symbol denotes Euler summability of order one. The Euler transformation 

has been studied at considerable length particularly by E. Jacobsthal, Mathematische 
Zeitschrift, vol. 6 (1920), pp. 100-117, and K. Knopp, Mathematische Zeitschrift, 
vol. 6 (1920), pp. 118-123; vol. 15 (1922), pp. 226-253. 

§ G. Wallenberg and A. Guldberg, Theorie der Linear en Differenzengleichungen, 
p. 34. 
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derivative of a product. 

LEMMA 3. If 

(3) 7Y*> = ] t ( - l)»tCH+h+1,M1Citi2^>', j = 0, 1, 2, • • • , k - 1, 

( 4) r / » = (~ D ^ n ^ X , , C ^ M 
v ' ; 2&+i 2 '+ 1 

In order to prove this result we use the binomial expansion 

n+k+l 

(1 - 2.r)»+*+1 = £ C M + * + M ( - 2*)'. 

Divide this equation by^lx*"1"1 and then differentiate j times with re
spect to x. As a result of the differentiation a block of j terms vanishes 
on the right-hand side. We have then 

J_ . (1 - 2*)"+*+! _ 1 n • V (~ lyCn+k+l.i 

j \ Xk+1 j \ t-0 Xk 

n+k+l 

i*mj+k+l 

n+k+l 

+ Z) ( - 2)«:M.»+i(A-ib-xi/**"i"*"1, 

or 

1 . (1 - 2 * ) » + * " _ 1 „ . ^ ( - 2)*CnW>» 

7! xk+l j \ i^o xk+l~l 

n 

+ £ ( - 2)*+*+ICn+*+,,i+*+1Ci,J-x
<->-. 

Now, multiply the last equation by ( —l)*+/+i 2~{k~H+l) and evaluate 
for x = 1. We obtain 

( _ l)*+;+l (1 _ 2*)»+*+1 

•LJ r. 

j\2k+i+i a;=»l 

(5) _(-i)*»» j . ( - D W , 

n 

+ E ( - l)i+'C„+4+1,<+*+1Ci,,2
i-' 

w 

From equations (3) and (5) we have 
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( _ l)*+/+l (1 _ 2x)n+k+1 

77*) = - - D j - -

<6)
 +!zi^ig,t("2)'c-w" 

Of the terms in the expansion of the first expression in the right-
hand member of (6) we shall retain only the term of highest order in 
explicit form. Since the greatest value of j is &•—1, the remaining 
terms are 0(nk~2). In the second expression of the right-hand member 
of (6) we shall again preserve in explicit form only the term of highest 
order. Regardless of the value ofj the terms which remain are 0(wfc_1). 
Accordingly, we obtain the formula (4). 

3. Proof of the theorem. The &th Cesàro mean for the series ^n-obn 
is given by 

n 

Cn k) = ~ = " 
^n+k,k ^"n-\-k,k 

We wish to prove that if the condition (1) of the theorem obtains, 
then 

^ Ana0 
lim^*> = Z — > 

where bn = ( — l)nan. 
We have, using Lemma 1, 

n n n 

Snk^ = 2^ Cn+k-i,kbi = — 2L* Cn+k-i,k+lbi + 2-f Cn+k+l-i,k+lbi 
t=0 t=0 i=0 

n n—1 

= — 2^t Cn+k—i,k+\bi + 2l^ Cn+As—*'tfc+l6i+l. 
i=0 i=—1 

Then 
w - l 

(7) S^k) = — 2-< Cn+k-ifk+i^bi + Cw+fc+i,fc+i6o, 
i=0 

since Ck^+i — O. Employing this technique on (7) we obtain 

n—2 

Snk) = Zs Cn+k~i,k+2&2bi + Cn+k+l,k+lbo — Cn+k+l,k+2àbo. 
i=0 

After n such operations on the original expression for 5W
(A;) we get 
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(8) £„<*> = Z ( - lyCr+k+uk+i+lAVo. 
i = 0 

Formula (2) of Lemma 2 now enables us to express (8) in terms of 
differences of ÜQ. Thus, 

i 

A% = A*(- l)°a0 = Z C , - , , A ' ( - iy-W-''a0 

= Z (~ ïy-tCi.ëW-iao = Z ( - ^ C i . ^ - ' A ' a o . 

Then, we may write 

n i 

(9) £„<*> = Z ( - 1 ) < G H - * H . » + * H £ (~ l)Ct-,,-2<-'A'a0. 
i=0 3=0 

Interchanging the order of summation in (9) we have 

n n 

Snm = Z A ' I O Z ( - l)* f 'GH.n-i.*f*-iCu2W, 

and, recalling the definition (3), we have 

(io) sn<*> = t r / « A ^ . 

Applying the condition (1) of the theorem we may write (10) in the 
form 

(11) Sn™ = 2)r/*>A>a0 . 

From formula (4) of Lemma 3 we obtain Tfk) = Cn+k+i,k/2>+1 

+ 0(rc*-1).Then, (11) becomesSn<*> « C n + i + n E ^ ' a o ^ ^ + O C » * - 1 ) , 
whence 

W*> » + * + 1 k^i A'a0 , , x 

Cn(*) = = — — E — + 0 1 » . 
Cn+klk n+ 1 y_0 2>+i 

Thus, we obtain our main result: 

k^i A3'a0 
Hm c») = Z — • 

In order to complete the proof of our theorem it remains to prove 
that l i m n ^ * - 1 ) does not exist. We have Sn«>-» =£j"0

1:T/*-1>A'ao. 
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Using Lemma 3 we have 

*-i ( _ l)/+«C„+* i Ü A3'a0 

i'—o 2 j^o 23 

( - 1 ) W - - 1 C H - * . » - I t î A'oo 
= 2> A^o + Cn^^E^T + O^-2)-

Then 
5 (»-D A * - i a M A,-a 

lime!*-» = lim = lim ( - 1)*+—i + £ — . 
n-»oo n->» Cn+k—l,k—l % »-*°° ƒ—0 2 ? + 1 

This limit fails to exist. Consequently, under the hypotheses of our 
theorem, the series E^=,0( — l)nan is not summable (C, k — 1). 

NORTHWESTERN UNIVERSITY 

A GENERAL CONTINUED FRACTION EXPANSION* 

WALTER LEIGHTON AND W. T. SCOTT 

Introduction. Considerable attention has been given at various 
times by many writers to the function-theoretic character of con
tinued fractions of the form 

aix a%x 
1+ 

1 + 1 + 
Only a very restricted class of power series, the "seminormal" ones, 
admit an expansion into a continued fraction of this type (cf. Perron 
[3, p. 301 ]). For example, the power series expansion about the origin 
of the function 1+x2 fails to be seminormal. In §1 of this paper we 
show that every power series admits an expansion into a continued 
fraction of a form which is a generalization of that above. Many of 
the older theorems have immediate generalizations. These are pre
sented without proof when the demonstration parallels that for the 
seminormal case. 

In §2 we discuss the question of gaps in seminormal power series. 
In §3 an important special case is considered. 

1. Expansions in continued fractions. Let 

( l . i ) i + 
i + i + 

* Presented to the Society, September 6, 1938. 


