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It is known that, for a certain class of representations, the notion 
of the degree (Abbildungsgrad) can be transferred into Banach spaces 
and is useful for proving existence theorems for boundary value prob
lems and integral equations. J The same holds for the related notion 
of the order of a point with respect to the image of a sphere (Rothe 
[5]). It is the aim of the present paper to apply these notions to the 
proof of some uniqueness theorems. § 

Section 1 contains some uniqueness theorems for equations in 
Banach space. In §2, application is made to a certain system of non
linear integral equations for which the existence proof was given in 
[5]. 

1. Uniqueness theorems in abstract spaces. Let E be a Banach 
space, || and let ||^|| denote the norm of an element (point) ^ c £ . Let r 
be a positive number, S the sphere ||f|| =r> and V the "full" sphere 
U^ll^r. If then f(£)=£+iK£) denotes a "representation with com
pletely continuous translation," ^ we denote for any full sphere F * c F 
and its boundary 5* the degreeft in the point tfocE^t with respect 
to the representation of F* given by f, by 7(f, F*, l)o), and likewise 
the order (see [5, §2]) of tyo with respect to the image of 5* by 
w(f, £*, tyo). If ï = ïo is an isolated solution of the equation f(£)=tyo, 
then the number 7(f, v, tjo) is the same for all full spheres v with center 
£0 which contain no other solution. §§ This number is called the index 

t Presented to the Society, November 26, 1937. 
X Leray-Schauder [4]. The numbers in brackets refers to the list at the end of 

this paper. 
§ Considerations closely related to those of the present paper (especially of §1) 

are to be found in [3, pp. 250, 258]; cf. also the second footnote on page 610 of the 
present paper. Uniqueness proofs based on other topological ideas were given by 
R. Caccioppoli (see, for instance, Caccioppoli, Sugli elementi uniti delle trasformazioni 
funzionali, Rendiconti del Seminario Matematico, Padova, vol. 3 (1932), pp. 1-15) 
and G. Scorza Dragoni (see, for instance, Dragoni, Sut sistemi di equazioni intégrait 
non lineari, Rendiconti del Seminario Matematico, Padova, vol. 7 (1936), pp. 1-35). 

|| For the definition of Banach space see [l, p. 53]. 
1f That is, the "translation" gQ:) is unique and continuous, and the set of all 

points % (x) (with x c V) is compact. 
tfSee [4, part I, §5]. 
XX t)o is supposed not to lie on f(5*). 
§§ See [4, part II, §8]. 
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of the solution £0 and will be denoted byj(f» £o), or simply by i(£o). 

LEMMA 1. For 0^t^lletic = $o(t) be a continuous curve in the interior 
of V;for each t there is supposed to exist a full sphere v with center £o(0> 
lying in the interior of V> and possessing this property: ffeO^ffe) for 
any pair of different points £1, & lying in v. Then, the index j(jj, £(/)) 
is independent of t. 

PROOF. Let /* be a fixed / value, p the radius of v*s=vt*9 and w* the 
concentric full sphere with radius p/2 . On account of the Heine-Borel 
theorem, it will be sufficient to prove that if ô > 0 is chosen so that 

(.1.1) | / - /*| < Ô 

implies $o(t) in the interior of w*, then (1.1) implies also j($o(t)) 
=j(£o(/*)). To prove this, let /** be a fixed / value satisfying (1.1), 
and ze;** the full sphere with center £** = £0(£**) and radius p/2 so that 

( 1 . 2 ) 5* = ^ * ) c î e ) * * C 2 i * . 

Finally, let wf be a full sphere having £* as a center and lying in the 
intersection of w* and w**. Writing tif* for f(£*), we see from (1.2) that 
in ze>** (and in w?) £ = £* is the only solution of the equation f(£) =1}*. 
Therefore, by the definition of the index and by well known proper
ties of the degree,f it follows that, in obvious notation, 

(1.3) j(f) = 7(f, < tf) = 7(f, w**, **)• 

We consider now the segment g defined by 

ï(r) = f + T(Ç** - ? • ) , 0 ^ r ^ 1. 

This segment connects the points f* and ?**, is contained in the in
terior of w**, and therefore, according to (1.2), is also in v*. Hence it 
follows from the hypothesis concerning v* that, if £ varies continu
ously along g from £* to £**, f($) is different from the image of the 
boundary of w**. Therefore, Y(f, zo**, f(ï(r))) is defined and independ
ent of r, and we have 

7(f, ™*\ f(f)) = 7(f, «>**, f(!**)) = j(f*). 
Hence, from (1.3), .ƒ(?**) =i(ï*)> which was to be proved. 

THEOREM 1. Let tfo be a point of E which is different from the image 
of 5 . Using the previous notations, we make the following assumptions: 

(a) u(S, f, t ) o ) = ± l . 
(b) If the points $', 5 " of V are solutions of the equation f(ç) =ty0, 

they can be connected by a curve with the properties described in Lemma 1. 

t See [4, part I, §1; and part I, §7]. 
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Then the equation f(ç) =t)0 has one and only one solution in V; the 
index of this solution is ± 1. 

PROOF. Tha t there is at least one solution in V, follows immedi
ately from (a), f As, on the other hand, all solutions are isolated, the 
number n of different solutions must be finite. J As the sum of the 
indices equals the order § and as, in accordance with Lemma 1, all 
indices have the same valued, it follows that nj= ± 1, which proves 
our theorem. 

LEMMA 2. Let lt($) be a representation with completely continuous 
translation f or each value t in the closed interval [0, l ] . We make the 
following assumptions: if ty* = I«(o), the solution £ = o of the equation 
h(lù =t)t is uniformly isolated, that is, there exists a full sphere v with 
center o and a radius independent of t so that v contains no other solu
tion than i = o; moreover, lt(x) is continuous in t, uniformly with respect 
to all $cv. Then the index j(lt, o) is independent of t. 

PROOF. Let s be the boundary of v, and t* a fixed lvalue . Let e de
note the positive distance between t}t* and lt*(s), and ô a positive num
ber so that 

(1.4) | | t . ( l ) - W t ) | | < « / 2 , i c « , 

for 

(1.5) \t-t*\ <ô. 

On account of the Heine-Borel theorem, it will be sufficient to show 
that for such t 

(1.6) id*,o) «id*.,o). 

To prove this, we notice that for all f c 5 and for t satisfying (1.5) the 
inequality 

(1.7) || MÖ - Vil â ||V(J) - Vll - | |lf(l) - Ml)|| > e - e/2 = 6/2 

holds because of (1.4) and the definition of e. Therefore 

(1.8) 7 ( I * v, *•) = 7d«, v, D,.), | t - /* | < Ô. 

On the other hand, (1.4) shows that tjt is contained in the interior 
of the full sphere with center t)t* and radius e/2, while, according to 
(1.7), lt(s) lies in the exterior of this sphere for all t satisfying (1.5). 

t [5, §2, Theorem 3 ] . 
t This follows easily from the fact that S( ï ) is completely continuous. 
§ See [5, §3]. 
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Therefore 

(1.80 Ydi,*,*-) = 7 ( M , f c ) . 

As, by definition of the indexât**, o) =y(tt*,v, t)t*),j(U, o) =y(lt,v, \)t), 
(1.6) follows from (1.8) and (1.8'). 

Before formulating the next lemma, it is convenient to give some 
definitions concerning "differentials":! 

DEFINITION. The representation f(ç) with completely continuous 
translation is said to be differentiable in the point £0 when there exists 
a representation I($) = I($, £o) with the following properties: 

(a) 8(s) = I(s) — I is UnearX and completely continuous. 
(b) l im t .„ | | f ( ï ) - f ( îo)- l ( ï - ïo, ïo) | | / | | î - ïo| |=0. 

The differential I is said to be nonsingular if the equation I($, £0) = o 
has only the solution $ = o. It is said to be continuous if it is continu
ous in £o, uniformly for all g of a bounded set. 

LEMMA 3. If f(c) possesses the nonsingular differential I($, £0) in the 
point ï = £o lying in the interior of F, then the solution jc of the equation 
f(ï) =f(^o) is isolated, and 

(1.9) i ( f ( ï ) , ïo)=y( i (â, ïo) ,o) .§ 

PROOF. Let 5 be the sphere | | j — f0|| =Pi where the positive number 
pi is so small that 5 c F. Since I is nonsingular, I(ç—ç0» £o) is different 
from o for £ c S; hence it follows|| that for a certain positive number d 

||I(? - ïo, Jo)|| > d, for ||f - io|| = Pi. 

From this follows on account of the linearity of I for any £T^£O 

(l.io) iiKï-ïo,ïo)ii = kzAili( ^ *° Ph %\j >y t - 1 0 | | d / P h 
Pi II \||? - ?o|| /Il 

Let now P2 be such a positive constant that for 0 < | | j — fo|| Sp* the in
equality 

Hf(t) - f(to) - Kt-*o,ïo)|l d 

II? - fo|| PI 

holds. This, together with (1.10), implies 

t As to differentials in function spaces, see [2], 
X For the definition of linear transformations see, for instance, [ l] . 
§ This is known. Cf. [4, part II, §10]. For the sake of completeness, we give a 

complete proof. 
|| See, for instance, [5, §1, 6], 
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(1.11) || f (ï) - f ( ï 0) - I ( ï " f o, ïo)|| < || l(ï - ïo, ïo)|| 

so that 

||f(ï) - f(ïo)|| è ||Kï - ïo,ïo)|| - ||f(ï) - f(ïo) - Kï - ïo,ïo)|| > O 

for O < ||f - jo| | ^ P2. 

From this it follows that the full sphere v with center ïo and radius p2 

contains no solution of f(ï) = f (ïo) except ïo. Hence, ïo is isolated and 
we have, moreover, 

( u ) i(f(ï)> ïo) = «( f ( ï ) , s, f (ïo)), 

j ( I ( ï - ïo, ïo), ïo) = f*(I(ï - ïo, ïo), s, f(ïo)) 

where, as usual, 5 denotes the boundary of v and u the order. But a 
theorem proved in a previous paper* shows that (1.11) implies 

«(Kï) , s, f(ïo)) = «(Kï - ïo, ïo), 5, f (ïo)), 

so that the equality j(f(ï), ïo) =i(I(f — ïo, ïo), ïo) follows from (1.12). 
This proves (1.9) as it is easily seen that j(Kï» ïo)» o) =i(I( ï —ïo, ïo), ïo). 

LEMMA 4. For 0 g tS 1 /e/ ï = ïo(/) be a continuous curve in the interior 
of V, In each point of this curve, f(ï) is supposed to possess a nonsingu-
lar continuous differential I($, $o(t)). We say that the index j(f» ïo(0) 
(which exists according to Lemma 3) is independent oft.^ 

PROOF. Upon putting I*(g) = I(i, ïo(0)> *t *s s e e n from Lemma 3, 
equation (1.9) that it is sufficient to prove the independence of 
j(h(i), o) from t. This again follows from Lemma 2 since, by the as
sumptions made about tt, the hypotheses of this lemma are fulfilled. 

THEOREM 2. In our usual notation, t let tjo be a point of E not lying 
on the image of S. We make the following assumptions: 

(a) « ( f f S , l > o ) = ± l . 
(b) If the points ï ' and ï " of V are solutions of the equation f (£) = tyo, 

they can be connected by a curve with the properties described in Lemma 4. 
Then the equation f(ï) =ty0 has one and only one solution in V; the 

index of this solution is ±1. 

PROOF. The proof of this theorem is obtained from the proof given 
for Theorem 1 by substituting the words "Lemma 4" for the words 
"Lemma 1." 

* See [5, §2, Theorem 2a]. 
t Cf. [3, p . 250] where (without proof and explicit statement of the hypotheses) 

this independence of t is used. 
% Compare the beginning of this section. 
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2. Application to integral equations. Let s, t denote points of an 
m-dimensional domain B. We consider the following system of non
linear integral equations for the unknown functions ^i(/), ^2(2), • • • , 
un(t) : 

(2.1) Ui{s) + f Ms, t, «i(0, u*(t), • • • , un(t))dt = 0, 
J B 

% = 1, 2, • • • , n. 

The assumptions concerning the functions ƒ»• are the following: 
(a) They are defined for 

n 

scB, tcB, EUKOl ^ R, 
; - l 

where R is a positive number. 
(b) For each system of continuous functions Ui(t), • • • , un(t), sat

isfying 

n 

(2.2) 2 ]max | «,•(/) | S R, 

the integrals (2.1) exist. 
(c) Moreover, these integrals are uniformly bounded and equi-

continuous for the set of all systems of continuous functions 
Wi(/), • • • , un(t) satisfying (2.2). 

(d) There exist "dominant" functions Fj(s, /, «1, • • • , un) with the 
following properties : they are defined for s c B, t c B, and all systems 
of nonnegative numbers #1, • • • , un satisfying X)*.i#/^.R; ^ e inte
grals 

f Fi(s, /, f*i(0, ' ' ' , «#»(*))# 

exist for all systems of nonnegative continuous functions ui(t), • • • , 
««(/) satisfying (2.2); moreover 

(dl) \M$> t> UU ' • * , ttn) I ^ ^»(5, /, I Wi| , ' ' ' , I Un\ ) Î 

(d2) Fi(s, ty ui, • • • , un)^F{s, t, vi, • • • , » » ) for O^wiâf i , • • • , 

(d3) there exists a positive number r^R so that 

(2.3) 2^max I J^(s, /, ru r2, • • • , rn)<# ^ r 

holds for any system of nonnegative numbers n., r*, • • • , rn whose 
sum is r. 
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Under these conditions, it was proved in [5, §5] that the system 
(2.1) has at least one continuous solution Ui(t), • • , un(t) with 

n 

(2.4) ]£max \UJ\ ^ r. 

We prove now 

THEOREM 3. The system (2.1) has only one continuous solution satis
fying (2.4) if y in addition to (a)-(d3), the following conditions hold: 

(d 3 ) Condition (d3) remains true after the substitution of " <" for 
"£" in (2.3); 

(e) for s c By t c B, and all systems #i, • • • , «» with ]C*-i Iw/1 = r ^ e 

differential quotients dfi/duj exist and are continuous functions of 
(Sy ty uiy • • • , # w ) ; 

(f) f or any system of continuous f unctions Ui(i) y • • • , un(t) satisfying 
(2.4), tóe system of linear integral equations 

... r A */<(*, *, ̂ (o, • • •, ^(Q) . 
«.-(*) + I 2^ : zAt)dt = 0, * = 1, 2, . • -, », 

tes only the solution JSI = J&2 = • • • =zn = Q. 

PROOF. Let E be the Banach space whose points j are the systems 
of continuous functions 

Ï = (Wi(0, ^ ( 0 , ' * ' > Wn(0) 

and whose norm is given by 

n 

Ikll = Z ) m a x I «KO l> /CJ5-

Let $(ï) be the representation which makes correspond to the point £ 
the point 

S(ï) = ( ƒ /i(s, *, «i(0, • • • , «»(0)*> 

J ƒ»(*, t, Wi(/), ' ' ' , «»(*))*)• 

It was proved in a former paper* that, under the conditions (a)-(d3), 
5(ï) is completely continuous and that the inequality ||3f(?)|| ^r holds 

*See [5, §5]. 
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for all points £ of the sphere 5 defined by \\ic\\ =r. The proof given for 
this inequality shows that under the condition (ds' ) even 

(2.5) Il8(ï)||<', for||f||-r, 
holds. That means that the translation of the points of S caused by 
the representation f (£) =£ + $(£) is l e s s than the radius of 5, from 
which it follows* that the order u(\, 5, o) equals 1. Hence, hypothesis 
(a) of Theorem 2 is fulfilled. 

Our theorem will be proved if we can show that hypothesis (b) of 
Theorem 2 is also fulfilled. For that purpose, we put 

Ï0 = Ooi(0> «02(0> ' ' ' 9 «0n(0)> 

I = 0 i ( / ) , Zt(t), • • • , *„(*)), 

1(3, So) = (zi(s) + I ] £ —M *ƒ(*)*, • • • , *n(s) 
\ J B / - l L ô « , J o 

J B ,-1 LOW ƒ Jo / 
where 

I" dfn _ d/ip, /, «oi(fl, • ' • , ^on(/)) 

A simple application of the mean-value theorem shows then immedi
ately that the conditions (e) and (f) imply that I($, £0) is a continuous 
nonsingular differential of f ($.) (in the sense of the definition given in 
§1) in each point of the full sphere V defined by ||$|| Sr. As, on ac
count of (2.5), all solutions of the equation f(j) = ï + 5 ( ï ) = 0 n e m the 
interior of V, hypothesis (b) of Theorem 2 is indeed fulfilled. 
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