
ON THE LOGARITHMIC SOLUTIONS OF THE 
GENERALIZED HYPERGEOMETRIC EQUATION 

WHEN p = q + l 

F. C. SMITH 

1. Introduction. In a recent paper,* the author gave the relations 
among the non-logarithmic solutions of the equation 

(i) i l l (* + ««) IL(e + c,-i)\y~o, 

where 6 = z{d/dz) and where the at and ct are any constants, real or 
complex, the only restriction being that one of the ct must be equal to 
unity. Such solutions can be found in a number of places in the 
literature, f But in attempting to study the logarithmic cases of the 
problem treated in the above-mentioned paper, the author was un
able to find the logarithmic solutions of equation (1) in the literature. 
I t is the purpose of this paper to present these logarithmic solutions, 
but for the sake of completeness, the non-logarithmic solutions are 
also given. The methods used are those of Frobenius.J 

2. Non-logarithmic solutions. The solutions of equation (1) about 
the point 2 = 0 are all non-logarithmic in character if no two of the ct 

are equal or differ by an integer; and even if some of the ct are equal 
or differ by an integer, the solutions will continue to be non-logarith
mic provided certain of the ct are equal to or differ from certain of the 
at by an integer. Since these special cases can easily be recognized, 
we shall avoid them in our theorems by making the hypotheses 
stronger than necessary. 

THEOREM 1. If no two of the ct are equal or differ by an integer, then 
the solutions of equation (1) about the point z = 0 are non-logarithmic in 
character and may be written in the form 

* F. C. Smith, Relations among the fundamental solutions of the generalized hyper-
geometric equation when p = q-\-l. I. Non-logarithmic cases, this Bulletin, vol. 44 (1938), 
pp. 429-433. 

t See, for example, L. Pochhammer, Ueber die Differentialgleichung der allge-
meineren hyper geometrischen Reihe mit zwei endlichen singular en Punkten, Journal 
fiir die reine und angewandte Mathematik, vol. 102 (1888), pp. 76-159. 

J G. Frobenius, Ueber die Integration der linearen Differentialgleichungen durch 
Reihen, Journal für die reine und angewandte Mathematik, vol. 76 (1873), pp. 214-
235. 

629 



630 F. C. SMITH [August 

/ON T7 i .-TT r ( 1 + C* - ^ ^ TT r ^ + at - *>+ *) 

(2) Fo, = ^ -^n Z-— z n r — —— *», 
«_i r ( l + a« — c,-) n=o *-i r ( l + c* - c,- + n) 

i = 1,2,- • • ,<? + 1; \z\ < 1. 
PROOF. If we substitute into equation (1) the series 

00 

(3) Fo(w) = Z «M"+«, 

we obtain, since f(0)zn = znf(n), 
oo / 3+1 9+1 \ 

z) «n s n o + » + G*)̂ +W - n o + » + ° t -1)̂ -1"71-*1 > 
n = 0 V f = l *=1 / 

oo / 3 + 1 3 + 1 ^ 

(4) = E ] « n _i I I (w + » + af - 1) - « n u (w + n + ct - 1) >2W,+W~1 

w = l V i = l t=l J 
3 + 1 

- « o u (w + c« — l ) ^ ^ 1 = 0. 

Thus, the indicial equation becomes 

<z+i 

(5) I K ^ + ^ - 1 ) = o, 

whose roots are 

(6) w = 1 - cy, / = 1, 2, • • • , g + 1. 

Moreover, the coefficients an satisfy the recurrence formula 

St1 (w + n + at - 1) 
W) «n = H ; ; ; -cxn-i, 

«.i (w + # + c* — 1) 

which leads to the final result 

«ft* (w + n + a% — 1) • • • O + a«) 
a« = 1 1 «o 

*-i O + n + ct — 1) • • • O + ct) 
(8) 

n9+i r ( w _|_ ct)T(w + at + n) 
ao-

,=i Y{w + at)T(w + ct + n) 
If we take «0 = 1 and use (8) in (3), we have 

«+1 r (w + <*) A ftt r (w + at + n) 
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from which the various solutions may be obtained by setting w equal 
to the roots (6) of equation (5). This leads to the desired result (2). 

In a similar manner, we may prove the following theorem: 

THEOREM 2. If no two of the at are equal or differ by an integer, then 
the solutions of equation (1) about the point z = <*> are non-logarithmic in 
character and may be written in the form 

(10) F,»/ = s-^II 2-/ I I > 
t=i r ( l - ct + a,) w==0 «-1 r ( l - at + a3- + n) zn 

j= 1 , 2 , . . . , g + l ; \z\ > 1. 

3. Logarithmic solutions. If we suppose that r of the ct are equal 
or differ by an integer, and assume at the same time that none of 
these r Ct are equal to or differ from any of the at by an integer, then 
the proof of Theorem 1 breaks down, since a zero factor will appear 
in the denominator of (7) for some values of n. Under these condi
tions, r of the solutions of (1) about the point 2 = 0 become logarith
mic in character. There is no loss of generality in taking the r ct's 
as £i, c2, • • • , cr, arranged with their real parts in ascending order; 
thus, let us assume that 

(11) C% — C\ = l\y Cz — C2 = h, ' ' ' , Cr — Cr—\ = lr—l, 

where each lv is zero or a positive integer. Under these conditions we 
may state the following theorem: 

THEOREM 3. If ci, c2, • • • , cr satisfy (11) but do not equal or differ 
from any of the at by an integer, then the solutions F0j-, (j = l , r+1, 

• • • , q + 1), of equation (1) are given by (2), but the remaining F0/ are 
logarithmic in character and may be written in the form 

Yoi = ( - 1 ) ' + 1 E ( - l ^ i - i . - i a o g z)t-Yov 

(12) . v=\_ 

+ E ^«T. T I G . ^ O , *)> i = 2, • • • , r;* I *| < 1, 

where G^~v)(0, z) denotes the (j — v)th derivative with respect to w of the 
function 

* If we agree to delete the first summation of (12) when j = 1, then Foi can also be 
obtained from (12). 
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«# r(i + ct - d + w) v-l / wW \l~v ff+1 

aw, z) = (- i ) i—D«.(-—) n 
«-î \sm irw/ i==,i 

T(l + at - ci + w) 

(!3) • £ ) I I r(cv - ct - w - » ) r ( l + at - cv + w + n) 
=»o * = i 

«+1 r ( l + a i - c „ + w + **) 
• n 7—— , , , K-1)-1»]», 

«-» r ( l + c« — c* + ze; + n) 
evaluated f or w = 0; in (13) the —1 factor and the first product of the 
summation are to be deleted when v = l and the special definition /0 = °° 
is to be taken; moreover, if /v_i = 0, the special convention Gv(w, z)=0 
is made. 

PROOF. According to the theory of Frobenius, the solutions F0j-, 
(j= 1, • • • , r), of equation (1) may be obtained by setting w=* 1 — cr 

in 

(14) V(w) = K(w)(w + cr- iy~lY0(w), V'(w), V"(w), • • • ; V<*-»&), 

in which Yo(w) is given by (9), and in which K(w) is an arbitrary 
analytic function of w for w = l—cr. Now V(w) may be written 

3+1 

i^w)^n r(^+ c ') 
F(w) = — _ J z ! | ( w + r̂ _ i)«-in r(w + *) 

t=*i 

(15) 

- «+1 r(w + a, + «) ) 
„_o j-i r(w + cj + «) j 

V * - l 

«+1 

*=r 

9+1 

II r(w + a*) 
*=1 

, «H-i <m r ( w + a, + cr - cv + n) \ 
2^z~cv 22 11 znc • 
„ - 1 n=0 «-1 r ( w + C* + Cr — C„ + W) / 

By several applications of the well known relation 

(16) T^ = -W\ T^ ' 
r ( l — w) sin TTW 

we may reduce (IS) to the form 
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ff+i 

K(w)zw+CrJl T(w + ct) 

V(w) = '~r 

(17) 

«+1 r - l 

I[r(w + fl.)IIr(i - ct- w) 

• i J2 Z-°*(- l ) r - l + S « " < W +Cr- l ) " - 1 

r T(W + cr- i) -y-v 

Lsin 7r(w + cr — 1)J 

• 1 1 3 7 — r ~ -Gv(w + cr- l,z)>. 

Since K{w) is an arbitrary analytic function of w for ze> = 1 — cr, we 
may choose it so that (17) reduces to the form 

(18) V(W) = Zw+C' | ] T g-**(W + Cr- \)V-1GV{W + Cr-1, z)\ . 

T h u s , 

(19) V(w - Cr + 1) = Zw | X) 21-CvWv-1G,(^, 2) > . 

According to the theory of Frobenius, then, we have 

rd*-lv(w)-i rdi-w{w - cr+ i)i 

r r d / - i -i 

= 2 ^ zl~Cv\ zwwv~1Gv{w, z) 
v-i Ldw3'1 J^ .0 

(20) r / _ 1 r dj~h~l 1 

• [(v - 1) • • • (v - h)wv-h-x]w^ 

Js (j-i)\rd3-v 1 
= 2>—7-—^ — T *«.(«>,*) , i = i , 2 

> " " > J 

In order to obtain the desired result (12) from (20), we give a proof 
by induction. First of all, we note that 

/n^ Fo2 = z1-* \ z™Gi(w, 2)1 + 21-C*G2(0, 2) 
(21) Ldw Jw=0 

= log 2 Foi + *-«G{ (0, 2) + « 1 - ^ , ( 0 , 2), 
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which is the desired result (12) for j = 2. To complete the proof, we 
assume that (12) holds for F02, • • • , F0,j_i and then show that it 
also holds for F0,\ By the theorem of Leibnitz, we have from (20) 

Y0i = £ zi-°° ^ — ^ j £ C,-_„,*(log *)»G.«—"(O, z) 

= z (log*)*-*!; «i-'»^."1i;cf-.,^.g,»-')(o> z) 
(22) " - l {J~V)-

= E C ^ . ^ Q o g *)>"* 2 : s*— — ^-G.<*->(0, z) 
fc-l «-1 (ft — »)! 

?' (7 — D ! 
+ T,z1-CviL. rGv"~»K0,z). 

„_i 0 — ^)! 
The second summation here agrees with the second summation of 
(12). In order to show that the two first summations agree, we make 
use of our above assumption that 

Yok = ( - 1 ) * + 1 Ë ( - l )< :^ i f - i ( log2; )*-Fo. 

(23) 
A (ft-1)1 

+ E ^ - f rC^CO,*) , 2 ^ * ^ j - 1, 
v=l (ft — V)l 

so that 

k (ft — IV 

v-i (k — v)l 

(24) = F„* + ( - 1 ) * £ ( - l)«C*-i.,-i(log *)*-F0 . 

= ( - i ) » E ( - i)"C»-i.,-l(iog8)*-ro,. 

When (24) is substituted into the first summation of (22), we obtain 

Z C_i,»_i(log «)*"*(- 1 ) * É ( - l)*C*-i,*-i(log *)»-Fo. 
* — 1 t > — 1 

= E ( - l ) " C w . w Ê ( - l)'C*-i.*-i(log*)'-Fo, 
(25) 

= Z ( - i)"(iog «O'-Fo.E ( - !)*<:,•_!,*_!<:*_!,„_! 
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= Ëc^waog^'Fo.'X) (- wc,--*,*. 
If, in the binomial expansion of (a+b)J'~v, we set a = l and b= — 1, 
we obtain 

(26) 0 = £ ( - l )*C^ t i b = ( - 1 ) ' - + * " £ ( - l ) * C ^ f t , 

from which 

(27) ' i ; ( - i)*e*-,,* = ( - i ) ^ + 1 = ( - i)>+»+1. 

When (27) is used in the last member of (25), we obtain the desired 
first summation of (12). This completes the proof of Theorem 3. 

If we assume that 

(28) #i — #2 = ki, a% — a% = k2, - - - , # s - i — a» — ks-i, 

where each kv is zero or a positive integer, then, by means of a proof 
similar to that given above, we may establish the following theorem: 

THEOREM 4. If satisfy (28) but do not equal or differ 
from any of the ct by an integer, then the solutions ¥*,$, (j=l,s+l, • • • , 
2 + 1 ) , of equation (1) are given by (10), but the remaining F*,,- are 
logarithmic in character and may be written in the form 

F*, = (- 1 )^E (- 1)^!,.-! (log—Y V., 
(29) i ~ \ V %' 

+ £ z~a* JT-^i, W - > ( 0 , *), j = 2, 3, • • • , sf | z | > 1, 
_ i 0 - v) ! 

w/tére FlJ~v)(0, Z) denotes the (j — v)th derivative with respect to w of the 
function 

v-i / TTW Y~v Ç" F(l - at + a! + w) 
FV(W, z) = ( - i ) i — 2 « » i ( - — ) n ^ — . ^ 

\sm irw/ t~i r ( l — c* + #i + w) 
fc«—i—i t>—i 

(30) • J ) I I T(a* — ov - w - » ) r ( l - c« + a» + w + n) 

•g'if^f'ft'if'-H' 
t.v r ( l — at + a„ + w + w) L 2 J * Again, if we agree to delete the first summation of (29) whenj = 1, then Y^i can 

also be obtained from (29). 
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evaluated for w = 0; in (30) we make special conventions of the same 
type as those made in connection with (13). 

In connection with Theorem 4, it is of interest to note the 
unexpanded forms corresponding to (20), namely, 

(31) Ym1 = £ s - ^ '-\ — — z-"Fv(w, z) , 

i « i, 2 , . . . ,*. 
THE COLLEGE OF ST. FRANCIS 

ON THE FIRST CASE OF FERMAT'S LAST THEOREM* 

BARKLEY ROSSER 

We prove the following theorem : 

THEOREM. If p is an odd prime, a, j8, and y are integers in the field 
of the.pth roots of unity, «187 is prime to p, and 

ap + pp + yp = 0, 
then p^8,332,403. 

As ordinary integers are integers in the field of the £th roots of 
unity, we infer the following : 

COROLLARY. The equation 

oop + yp + zv = 0 

has no solution in integers prime to p if p is an odd prime less than 
8,332,403. 

To abbreviate statements, we shall say that an odd prime p is 
improper if there are integers a, |8, and 7 in the field of the £th roots 
of unity such that afiy is prime to p and 

ap + @p + yp = 0. 

Then the theorem to be proved can be stated in the form: 

THEOREM. There are no improper odd primes less than 8,332,403. 

The proof is based on a theorem of Morishimaf which, in our 

* Presented to the Society, February 25, 1939. 
t Taro Morishima, Über die Fermatsche Verrnutung, Japanese Journal of Mathe

matics, vol. 11 (1935), pp. 241-252. Earlier results of a similar nature are due to 
Pollaczek, Frobenius, Vandiver, Mirimanoff, and Wieferich. Compare Dickson's 
History of the Theory of Numbers. 


