NEW POINT CONFIGURATIONS AND ALGEBRAIC CURVES CONNECTED WITH THEM*

ARNOLD EMCH

1. Introduction. In the memorial volume† for Professor Hayashi, I studied an involutorial Cremona transformation in a projective S_r which is obtained as follows: Let $C_i = (ax)_i \lambda_i^2 + (bx)_i \lambda_i + (cx)_i = 0$, $(i = 1, 2, \dots, r)$, be r hypercones in S_r . Every value of λ_i determines a hypertangent plane to the cone C_i . Thus the parameters $\lambda_1, \lambda_2, \dots, \lambda_r$ for the hypercones C_1, C_2, \dots, C_r , in the same order, determine r hyperplanes which intersect in a point (x) of S_r . From this point (x) there pass, one for each of the r hypercones, r more tangent hyperplanes whose parameters $\lambda_1', \lambda_2', \dots, \lambda_r'$ are in the same order uniquely determined by the set $\lambda_1, \lambda_2, \dots, \lambda_r$, and hence are rational functions

$$\rho \lambda_i' = \phi_i(\lambda_1, \lambda_2, \cdots, \lambda_r), \qquad i = 1, 2, \cdots, r,$$

of the parameters λ . Conversely, the set λ_1' , λ_2' , \cdots , λ_r' determines λ_i uniquely: $\sigma\lambda_i = \phi_i(\lambda_1', \lambda_2', \cdots, \lambda_r')$. If therefore the λ 's and λ ''s are interpreted as coordinates of points of euclidean spaces $E_r(\lambda)$ and $E_r'(\lambda')$, there exists an involutorial Cremona transformation between the two r-dimensional spaces. The order and fundamental elements of this involution were determined in the corresponding projective spaces S_r and S_r' and applications given for S_2 and S_3 . These belong to a remarkable class of involutions which have the property that when in S_r and S_r'

$$P(\lambda_1, \lambda_2, \lambda_3, \cdots, \lambda_{r+1}), \qquad P'(\lambda_1', \lambda_2', \lambda_3', \cdots, \lambda_{r+1}')$$

are corresponding points and any number of transpositions between coordinates in the same columns is performed, say

$$Q(\lambda_1, \lambda_2', \lambda_3', \dots, \lambda_i', \dots, \lambda_r, \dots, \lambda_{r+1}'),$$

$$Q'(\lambda_1', \lambda_2, \lambda_3, \dots, \lambda_i, \dots, \lambda_r', \dots, \lambda_{r+1}'),$$

then Q, Q' is always a couple of corresponding points of the involution.

To this class also belong the well known quadratic and cubic involutions in S_2 , $\rho x_i' = 1/x_i$, (i = 1, 2, 3), and in S_3 , $\rho x_i' = 1/x_i$, (i = 1, 2, 3, 4),

^{*} Presented to the Society, September 6, 1938.

[†] The Tôhoku Mathematical Journal, vol. 37 (1933), pp. 100–109. See also Commentarii Mathematici Helvetici, vol. 4 (1932), pp. 65–73.

and in general in S_r , $\rho x_i' = 1/x_i$, $(i = 1, 2, \dots, r+1)$. It is the purpose of this paper to show the importance of these in connection with the plane elliptic cubic in S_2 and a certain septimic of genus three in S_3 .

2. The Δ_8 -configuration on the plane elliptic cubic. Let $A_1(1,0,0)$; $A_2(0,1,0)$; $A_3(0,0,1)$; $B_1(1,1,1)$; $B_1(-1,1,1)$; $B_2(1,-1,1)$; $B_3(1,1,-1)$ be the fundamental and invariant points of the quadratic involution in S_2 , $T_2 \equiv \rho x_i' = 1/x_i$, (i=1,2,3), and perform the possible permutations between the coordinates of corresponding points as indicated above, so that we obtain the four couples of corresponding points

$$\begin{array}{lll} P_1 & (a_1,\,a_2,\,a_3)\,, & P_2 & (a_2a_3,\,a_2,\,a_3)\,, \\ P_1' & (a_2a_3,\,a_3a_1,\,a_1a_2)\,, & P_2' & (a_1,\,a_3a_1,\,a_1a_2)\,, \\ P_3 & (a_1,\,a_3a_1,\,a_3)\,, & P_4 & (a_1,\,a_2,\,a_1a_2)\,, \\ P_3' & (a_2a_3,\,a_2,\,a_1a_2)\,, & P_4' & (a_2a_3,\,a_3a_1,\,a_3)\,. \end{array}$$

This is easily verified. Take for example P_2 ; its inverse is $(1/a_2a_3, 1/a_2, 1/a_3)$. Multiplying by $a_1a_2a_3$, we obtain as the same point (a_1, a_3a_1, a_1a_2) which is P_2' . The eight points of this Δ_8 configuration can be grouped into couples whose joins pass through A_1 , A_2 , A_3 as indicated in the following table:

It is moreover evident that the joins of corresponding points P_iP_i' pass through the point $O(a_1+a_2a_3, a_2+a_3a_1, a_3+a_1a_2)$. The result may be stated as the following theorem:

THEOREM 1. The eight points of a Δ_8 -configuration lie by twos on four lines through each of the points A_i . The joins of the four pairs of corresponding points pass through a fixed point O, uniquely determined by one pair of corresponding points in a Δ_8 .

Now O is the isologue of an invariant elliptic cubic C_3 of the involution, uniquely determined by any pair P_iP_i' of Δ_8 . Of course, C_3 passes through Δ_8 , B, B_1 , B_2 , B_3 , and also O' (a_2a_3 , a_3a_1 , a_1a_2). Draw any other secant s through O cutting C_3 in a pair Q_1Q_1' of corresponding points. These determine a new Δ_8 -configuration on the same C_3 , so that there are ∞^1 Δ_8 -configurations on C_3 attached to the triangle $A_1A_2A_3$.

On any elliptic cubic C_8 there are ∞^1 Steinerian quadruples (points of tangency of four tangents from a point of C_3 to C_3) and for each a diagonal triangle $A_1A_2A_3$. Choose $A_1A_2A_3$ as the fundamental triangle* of a quadratic transformation and the Steinerian quadruple as the set of invariant points B, B_1 , B_2 , B_3 . The elliptic cubic C_3 is invariant in this involution and the tangents at the B's cut C_3 in its isologue O. Hence we have the following theorem:

THEOREM 2. There are ∞^1 Δ_8 -configurations on each of the diagonal triangles of the ∞^1 Steinerian quadruples of a given elliptic C_3 , completely inscribed in this cubic.

3. The Δ_{16} -configuration and a septimic of genus three in S_3 connected with it. (1) Consider the involutorial cubic transformation T_3 : $\rho x_i' = 1/x_i$, (i=1, 2, 3, 4), in an S_3 with the fundamental points A_1 (1, 0, 0, 0), A_2 (0, 1, 0, 0), A_3 (0, 0, 1, 0), A_4 (0, 0, 0, 1), and the invariant points B_i (± 1 , ± 1 , ± 1 , ± 1), $(i=1, 2, \cdots, 8)$; and perform all possible permutations, or series of transpositions as explained in §1. In this manner a configuration Δ_{16} of eight couples of corresponding points $P_i P_i'$ is obtained as shown in the table

```
P_1 (a_1, a_2, a_3, a_4);
                                                      P_5 (a_1, a_2, a_3, a_1a_2a_3);
P_1' (a_2a_3a_4, a_1a_3a_4, a_1a_2a_4, a_1a_2a_3);
                                                      P_5' (a_2a_3a_4, a_1a_3a_4, a_1a_2a_4, a_4);
P_2 (a_2a_3a_4, a_2, a_3, a_4);
                                                      P_6 (a_2a_3a_4, a_1a_3a_4, a_2, a_3);
P_2' (a_1, a_1a_3a_4, a_1a_2a_4, a_1a_2a_3);
                                                      P_6' (a_1, a_2, a_1a_2a_4, a_1a_2a_3);
P_3 (a_1, a_1a_3a_4, a_3, a_4);
                                                      P_7 (a_2a_3a_4, a_2, a_1a_2a_4, a_4);
P_3' (a_2a_3a_4, a_2, a_1a_2a_4, a_1a_2a_3);
                                                      P_7' (a_1, a_1a_3a_4, a_3, a_1a_2a_3);
P_4 (a_1, a_2, a_1a_2a_4, a_4);
                                                      P_8 (a_2a_3a_4, a_2, a_3, a_1a_2a_3);
                                                      P_8' (a_1, a_1a_3a_4, a_1a_2a_4, a_4).
P_4' (a_2a_3a_4, a_1a_3a_4, a_3, a_1a_2a_3);
```

As in case of S_2 it may be verified at once that the points of each pair P_iP_i' correspond, and that the sixteen points lie by twos on eight lines through each A_i . If Q is any point of S_3 , then the line A_iQ is transformed into the line A_iQ' . The lines P_1P_2 , P_3P_6 on A_1 and P_1P_3 , P_2P_6 on A_2 form a quadrilateral in the plane $a_4x_3-a_3x_4=0$; $P_1'P_2'$, $P_3'P_6'$ on A_1 , and $P_1'P_3'$, $P_2'P_6'$ on A_2 a quadrilateral in the conjugate plane $a_3x_3-a_4x_4=0$. The table of the thirty-two lines, eight through each A_i follows:

^{*} For T_2 , T_3 and other involutions see the author's paper On surfaces and curves which are invariant under involutorial Cremona transformations, American Journal of Mathematics, vol. 48 (1926), pp. 21-44.

$$A_1: P_1P_2, P_1'P_2', P_3P_6, P_3'P_6', P_4P_7, P_4'P_7', P_5P_8, P_5'P_8';$$

$$A_2: P_1P_3, P_1'P_3', P_2P_6, P_2'P_6', P_4P_8', P_4'P_8, P_5P_7', P_5'P_7;$$

$$A_3: P_1P_4, P_1'P_4', P_2P_7, P_2'P_7', P_3P_8', P_3'P_8, P_5P_6', P_5'P_6;$$

$$A_4: P_1P_5, P_1'P_5', P_2P_8, P_2'P_8', P_3P_7', P_3'P_7, P_4P_6', P_4'P_6.$$

It also appears at once that the eight joins of corresponding points P_iP_i' pass through a fixed point

$$O(a_1 + a_2a_3a_4, a_2 + a_1a_3a_4, a_3 + a_1a_2a_4, a_4 + a_1a_2a_3).$$

To sum up we have the following theorem:

THEOREM 3. The sixteen points of Δ_{16} lie by twos on eight lines through each of the four A_i . The eight lines on each of any two of the four A_i form four quadrilaterals on the chosen two A_i , which lie in two pairs of conjugate planes with the join of the two A_i as a common axis. The joins of corresponding points of Δ_{16} pass through a fixed point O.

(2) It is known that the system of lines joining corresponding points of T_3 form a cubic line complex Γ :

$$p_{12}p_{13}p_{23} + p_{12}p_{14}p_{42} + p_{13}p_{14}p_{34} + p_{23}p_{42}p_{34} = 0$$

so that the lines of Γ on a point $O(b_1, b_2, b_3, b_4)$, $b_1 = a_1 + a_2 a_3 a_4$, \cdots , generate the cubic complex-cone

$$K = (b_1x_2 - b_2x_1)(b_1x_3 - b_3x_1)(b_2x_3 - b_3x_2)$$

$$+ (b_1x_2 - b_2x_1)(b_1x_4 - b_4x_1)(b_4x_2 - b_2x_4)$$

$$+ (b_1x_3 - b_3x_1)(b_1x_4 - b_4x_1)(b_3x_4 - b_4x_3)$$

$$+ (b_2x_3 - b_3x_2)(b_4x_2 - b_2x_4)(b_3x_4 - b_4x_3) = 0.$$

Among the generatrices of K are the eight joins P_iP_i' of Δ_{16} . The eight lines OB_i lie on K. Any other generatrix g of K is on two corresponding points Q and Q' of T_3 . These determine another Δ_{16} uniquely, which also lies on K. Thus there are ∞ 1 Δ_{16} 's on K. Corresponding points QQ' on K form a certain space curve whose order is obtained as follows: The join of Q(x), Q'(x') passes through Q when

$$\lambda x_1 + \mu x_2 x_3 x_4 = b_1,$$
 $\lambda x_2 + \mu x_1 x_3 x_4 = b_2,$
 $\lambda x_3 + \mu x_1 x_2 x_4 = b_3,$ $\lambda x_4 + \mu x_1 x_2 x_3 = b_4.$

Eliminating λ , μ , 1 from any two distinct triples of these equations, say between the first three and the last three, the cubic cones K_4 and K_1 with vertices A_4 and A_1 and the common generatrix A_1A_4 are obtained, along which they have the common tangent plane $b_2x_2 - b_3x_3$

=0. Hence they intersect in a residual septimic C_7 , the locus of the point Q, Q'. This follows immediately by inspection of the equations

$$K_4 = b_1 x_1 (x_2^2 - x_3^2) + b_2 x_2 (x_3^2 - x_1^2) + b_3 x_3 (x_1^2 - x_2^2) = 0,$$

$$K_1 = b_2 x_2 (x_3^2 - x_4^2) + b_3 x_3 (x_4^2 - x_2^2) + b_4 x_4 (x_2^2 - x_3^2) = 0.$$

This can be verified by other methods of proof which for the sake of brevity shall be omitted.

(3) To prove that the genus of C_7 is three, project C_7 upon K_1 from a generic point P. The projection proper is a residual C_{14} of order $3 \times 7 - 7 = 14$. The cone K_4 cuts C_{14} in $3 \times 14 - 6 = 36$ points proper, because C_7 touches both K_1 and K_4 along A_1A_4 in three points which accounts for six (improper) points of intersection. The polar conic of P with respect to K_1 cuts C_7 outside of A_1 and A_4 in twelve points, so that altogether 36 - 12 = 24 points of intersection are left which are projected into twelve double points of C_7 , the projection of C_7 upon a generic plane. The genus p of C_7 and hence of C_7 is therefore $p = 6 \times 5/2 - 12 = 3$.

Now every couple $P_i'P_i'$ on K or C_7 gives rise to a definite Δ_{16} -configuration. Hence we have our next theorem:

Theorem 4. On every cubic cone K of the cubic complex associated with the involutorial cubic transformation T_3 there exists an invariant septimic C_7 of genus three with ∞^1 Δ_{16} -configurations.

It is interesting to note that the C_7 lies on two other cubic cones K_2 and K_3 with vertices at A_2 and A_3 by using the elimination process of λ , μ , 1 in the remaining possible ways, so that it may also be characterized by the property that *it lies on five cubic cones*.

(4) The investigation may be extended to any other S_r , r>3, but this would amount merely to a simple generalization of the preceding theory.

University of Illinois