
POINT SET OPERATORS AND THEIR INTERRELATIONS* 

E. C. STOPHER, JR. 

INTRODUCTION 

The fundamental operators of this paper will be defined in terms 
of a postulated derived set function. This procedure, first formally 
suggested by F. Riesz,f has been adopted by Chittenden J and others. 

The notation used here, which has definite advantages over the 
classical notation, was first suggested by Chittenden. It first ap
peared in print in work by Sanders § and later in a paper by the 
author.|| Capital letters A, B, and so on, will denote arbitrary sets 
of points in the space 5, J ( = cdS) will denote the isolated points of 
the space, and 0 ( = cS) the null set. Operators will be denoted by 
small letters d, i, and so on. Thus, for example, iA represents the in
terior of the set A, and dkA the derived set of the kernel of A. 

Such an operator which defines a set, either null or non-null, will 
be called a product operator. The number of single operators which 
make up a product operator will be called the order of the product 
operator. A product operator is said to be reduced if it is shown to be 
equal to another product operator of lower order or to one of the 
same order but which is expressed in terms of operators which precede 
in the list of definitions in Part I. Those for which no reduction has 
been found will be called unreduced. 

In Part I is presented a table of all the second order product opera
tors indicating the reductions. Many other reduction formulas in
volving higher order operators have been found, but these will be 
omitted in this paper.^ In Part II the space will be assumed to be 
dense in itself. With the aid of this additional postulate the theorem 
can be proved that all product operators of a given family can be ex
pressed in a certain canonical form. 

* Presented to the Society, April 9, 1937. 
t F. Riesz, Stetigkeitsbegriff und abstrakte Mengenlehre, Atti del 4 Congresso Inter

nationale dei Matematici, Rome, 1910, vol. 2, p. 18. 
% E. W. Chittenden, On general topology and the relation of the properties of the class 

of all continuous f unctions to the properties of space, Transactions of this Society, vol. 31 
(1929), pp. 290-321. 

§ S. T. Sanders, Jr., Derived sets and their complements, this Bulletin, vol. 42 (1936), 
pp. 577-584. 

|| E. C. Stopher, Jr., Cyclic relations in point set theory, this Bulletin, vol. 43 (193 7), 
pp. 686-694. 

H Found with proofs in the doctor's dissertation by the author, Interrelations of a 
Family of Operators on Point Sets and their Canonical Representation, State University 
of Iowa, 1937. 
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PART I. REDUCTION OF OPERATORS 

In the present discussion dA is undefined and will be called the de
rived set of A. We postulate : 

I. d(A+B)=dA+dB (operator is additive). 
II . d2A SdA (derived sets are closed). 

We make the following definitions :* 

D 1. Complement. cA =S—A. 
D 2. Extension. eA =A+dA. 
D 3. Interior. iA =AcdcA. 
D 4. Concentrated part. hA —AdA. 
D 5. Isolated set. jA =AcdA. 
D 6 . Border. bA=AdcA. 
D 7. Frontier, f A = AdcA +cAdA. 
D 8. Kernel. kA =J^B^A, such that B^dB. 
D 9. Separated part, s A =AckA. 

The following table gives all second order operators 0102-4. The re
ductions are indicated and the unreduced operators are placed in pa
rentheses. 

TABLE I 
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One will note that of the 100 second order operators, 60 are unre
duced. Of the 1000 third order operators 259 are unreduced. This de
creasing rate of increase of the unreduced operators suggests that 

* F. Hausdorff, Mengenlehre, Berlin, pp. 109-129. Under the postulates given, 
the extension function corresponds to Hausdorff's set of a points Aa. The points of dA 
correspond to his 0 points Ap. Similarly, hA corresponds to Ah, jA to Aj, bA to Ar 

(border is a translation of the German word "rand"), kA to A k, and s A to A9. 
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perhaps all product operators formed from these ten fundamental 
ones might be expressible in terms of some canonical system. This 
problem has not been solved for the general case. 

I t is interesting to note the simplifications which occur if we take 
the set A to be the whole space 5. The following table shows that 
there are only seven distinct first order operators cS, dS, iS, jS, bS, 
kS and sS, and nine distinct unreduced second order ones. One might 
expect bS ( = SdcS) to be null, but it has not been assumed that the 
derived set of the null set is null. 

TABLE II 
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PART II . SPACE DENSE IN ITSELF 

An additional postulate will be assumed in Part I I : 

I I I . dS = S. 

Under Postulates I, II and I I I , a table similar to Table I would 
show 49 instead of 60 unreduced second order operators. There are 
159 instead of 259 unreduced third order ones. A table similar to 
Table II under Postulates I, II , I I I would show only three distinct first 
order operators cS> iS, bS, and no unreduced second order operators. 

Consider the family £ consisting of the following sets, their com
plements, and these sets with A replaced by cA : 

daidA, a = 0 or 1, 

hac¥A, a, 0 s= 1, 2, 3, • • • (finite or transfinite ordinals), 
x 

R(a, j3, 7, K, X, /*, v) = fc-sV^II (jd»r)j*hvA, 
r « - l 
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where, by definition, 6°A =Af H?- i ( id° r M —A, and R is limited by 
the following equations : 

a, j8, 7, fx = 0 or 1, a$ = 0, ay = 0, 

an = 0 or 1, 7* = 0, 

X = 0, 1, 2, • • (finite ordinals), 

fc, aT, p = 0, 1, 2, • • • (finite or transfinite ordinals). 

To illustrate, 22(1, 0, 0, 1, 0, 1-, 5)=kdjh5A and JR(0, 0, 1, 0, 2, 0, 1) 
= ejdaijda%A. 

We will designate by £i the subset of £ for which the parameters K 
and aT are restricted to be finite ordinals. The author has proved the 
following theorem : 

THEOREM 1. The set </>A, where <j> is any finite product operator com
pounded from c, d, e, i, h, j , k and s, is a set of £i. 

The proof is one of mathematical induction. The first part of the 
proof consists of showing tha t the set A is an £i set. This is readily 
accomplished by noting tha t 

A = R(0, 0, 0, 0, 0, 0, 0), 

tha t is, A is obtained as that special case of R for which the value zero 
has been assigned to each of the parameters ce, /3, and so on. 

The second part of an ordinary proof by mathematical induction 
would consist of showing tha t the successor of a general set, <t>A, of 
the collection £i is an £i set. However, each of our sets has not just 
one but fourteen "successors" associated with it: d(f>A, dc<l>A, e<i>Ay 

ec$A, ixj>A, ic<l>A, h<j>A, hccj>A, j<f>A, jc<j>A, k(/>A, kc<j>A, s<j>A, a n d sc<j>A. 
One can omit eccj>A and ic<j>A since eccfrA equals ci<j>A and ic<j>A equals 
ce<f>A, but it is necessary to show that each of the other twelve "suc
cessors" of each of the £i sets is an £i set. This proof, which can be 
found in detail in the author's dissertation (loc. cit.), will be omitted 
here because of the large number of cases which must be considered. 

The results have been extended to the following: 

THEOREM 2. The set <f>A, where <j> is any finite product operator com
pounded from c, d, e, i, hjjy k, s and their transfinite powers, is an £ set. 

Since 62A equals 6A or A for all of the operators except d and h} 

it is necessary to consider the transfinite powers of only these two. 
It is necessary to show that each £ set when operated upon by trans
finite powers of d or of h will yield an £ set. For the details of this 
proof the reader is again referred to the same dissertation. 
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I t remains an unsolved problem whether or not generalizations of 
the theorems of this paper can be established which would include 
the border and frontier operators or which would not require that the 
space be dense in itself. 

ASHLAND COLLEGE 

A NOTE ON A PAPER BY J. A. TODD* 

A. SINKOV 

In a recent paperf entitled A note on the linear fractional group, 
Todd obtained an abstract definition for the group LF(2, 2n) in terms 
of n+2 generators. Apparently he gave no consideration to the ques
tion of the independence of the defining relations, for they can be con
siderably simplified. First, in view of the condition RSi = Si+iR 
(which is the same as i£{S0^~* = Si), the three generators U, R and S0 

are sufficient to generate the entire group. If we give a definition in 
teims of these three generators alone, the relations 

S? = 1, iî* 0, RSi = Si+iR 

may be discarded, and any Si (i^O) which appears in the remaining 
conditions may be replaced by its definition in terms of R and So. 
Next, the Cn-i,2 conditions SiS}=SjSi can be replaced by the n — 1 
conditions 

SoSi = SiSoy i = 1, 2, • • • , n — 1. 

For suppose j—i = a. Then, from S0Sa = SaSo, we get 

R^SoSJR-* = RKSaSojR-i, SiSj = Sfr. 

Writing SoSi = SiS0 in terms of R and So only 

SoR'SoKr* = WSoR-iSo, (SoR'S^R^)2 = 1. 

Thus, for the three generators £/", R and So, we require only n+5 con
ditions 

R*n-i = w = (uRy = (us0y = s0
2 = 1, (SoR'SoR-1)2 = 1, 

But even these three generators are not independent. For the rela
tion (UR)2 = 1 permits us to consider Z7and R as being equivalent to 

* Presented to the Society, February 25, 1939. 
t Journal of the London Mathematical Society, vol. 2 (1936), pp. 103-107. 


