
ON THE ABSOLUTE SUMMABILITY OF FOURIER 
SERIES. II1 

W. C. RANDELS 

Bosanquet2 has developed conditions for the absolute summability 
C(a) of a Fourier series. An immediate consequence of these condi
tions is that absolute summability is a local property for a>l. The 
purpose of this paper is to show by means of an example that absolute 
summability is not a local property for3 a = 1. 

A Fourier series is absolutely summable C(l) if X)«- 11 vm — crm-i \ 
< oo. We have 
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so that it is only necessary to consider 
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We define the functions 
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Then at x = 0, <K/W, 0 ==2fn(t) and, since 
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we have 
1 Presented to the Society, April 8, 1939. 
2 L. S. Bosanquet, The absolute summability of a Fourier series, Proceedings of the 

London Mathematical Society, (2), vol. 41 (1936), pp. 517-528. 
8 This result has recently been proved by a different method by Bosanquet and 

Kestleman, The absolute convergence of series and integrals, ibid., vol. 45 (1939), 
pp. 88-97. 
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n > m, 
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\ Am(fn,0)\ < ( » + ! ) / » « * . By (1) it is possible to choose a sequence of integers {«<} in such a 
way that 
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The function/(x) is then defined as ƒ(#) =]C*lo2~'!/ni(#). For this func
tion 
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so thatX^w- \Am(f, 0) | = oo. It remains to show that f(x) c L which 
is easily seen since 

f ' i ƒ ( * ) ! < * * = L 2 - < r \fni(%)\dx 

g £ 2~%n + 1) * < - . 
.-o 3(» + 1) 

We notice that , since this function vanishes in the neighborhood 
of the origin, it coincides with a function having an absolutely sum-
mable Fourier series in the neighborhood of the origin, and therefore 
absolute summability C(l) is not a local property. 
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COMPLETE REDUCTIBILITY OF FORMS1 

RUFUS OLDENBURGER 

1. Introduction. We shall say that F is a form in r essential variables 
with respect to a field K if F cannot be brought by means of a non-
singular linear transformation in the field K to a form with less varia
bles. Let F be a form of degree p written as aij...kXiX3- • • • xk, 
(iy 3, ' ' ' y k = l, 2, • • • , n). We arrange the coefficients of F in a 
matrix A whose nv~x columns are of the form 

1 CL\j> 

a>2j. 

l an j . 
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>k 

• >k \ 

The index i is associated with the rows of A and the p — 1 indices 
j , • • • , k are associated with the columns of A. We assume that the 
coefficients in F are so chosen that A is symmetric in the sense that 
the value of an element a»-,-... h is unchanged under permutation of the 
subscripts. I t can be shown2 that F is a form in r essential variables if 
and only if the rank of A is r. 

A form F is said to be completely reducible in a field K if F splits 
1 Presented to the Society, April 7, 1939. 
2 Oldenburger, Composition and rank of n-way matrices and multilinear forms, 

Annals of Mathematics, (2), vol. 35 (1934), pp. 622-653. 


