A NOTE ON MEASURE FUNCTIONS IN A LATTICE¹

M. F. SMILEY

We give first an equivalent statement of the measurability criterion of Carathéodory² which is applicable to an arbitrary lattice. We then study the closure with respect to finite and denumerable sums and products of the subset of measurable elements of a *modular* lattice. The case of regular³ "outer measure functions" is then briefly discussed. The elements of the theory of lattices are presupposed.⁴

Let us consider a lattice L on which is defined a real-valued function $\mu(a)$. The elements $a \in L$ which satisfy

(1)
$$\mu(a+b) + \mu(ab) = \mu(a) + \mu(b)$$

for every $b \in L$ will be called μ -measurable. The totality of μ -measurable elements will be denoted by $L(\mu)$.

REMARK 1. If L is a Boolean algebra and $\mu(0) = 0$, then a $\varepsilon L(\mu)$ if and only if a εL and satisfies the condition of Carathéodory,⁵ that is,

(2)
$$\mu(b) = \mu(ab) + \mu(b - ab)$$

for every $b \in L$. For, if $a \in L$ satisfies (1), the equation (1) and

$$\mu(a + (b - ab)) + \mu(0) = \mu(a) + \mu(b - ab)$$

yield (2). The converse is proved by Carathéodory.⁶

THEOREM 1. If L is a modular lattice, then $L(\mu)$ is a sublattice of L.

PROOF. Let $a, c \in L(\mu)$, $b \in L$. We obtain successively

$$\mu(a + (c + b)) + \mu(a(c + b)) = \mu(a) + \mu(c + b)$$

= $\mu(a) + \mu(c) + \mu(b) - \mu(cb)$
= $\mu(a + c) + \mu(b) + \mu(ac) - \mu(cb).$

Since $c \in L(\mu)$ we have

⁵ Op. cit., p. 246.

⁶ Ibid., p. 252.

¹ Presented to the Society, September 5, 1939.

² Vorlesungen über Reelle Funktionen, 2d edition, p. 246.

³ Ibid., p. 258.

⁴ See, for example, G. Birkhoff, On the combination of subalgebras, Proceedings of the Cambridge Philosophical Society, vol. 29 (1933), pp. 441-464; O. Ore, On the foundations of abstract algebra I, Annals of Mathematics, (2), vol. 36 (1935), pp. 406-437. The terminology and notation are those used by L. R. Wilcox and the author, Metric lattices, Annals of Mathematics, (2), vol. 40 (1939), pp. 309-327.

M. F. SMILEY

$$\mu(c + a(c + b)) + \mu(ac) = \mu(c) + \mu(a(c + b)),$$

$$\mu(c + (a + c)b) + \mu(cb) = \mu(c) + \mu((a + c)b).$$

Using the modular law we see that (a+c)(c+b)=c+a(c+b)=c+(a+c)b. It is then clear that

$$\mu(ac) - \mu(cb) = \mu(a(c+b)) - \mu((a+c)b),$$

and (1) with a replaced by a+c follows easily. Thus $a+c \in L(\mu)$. By duality, $ac \in L(\mu)$. This completes the proof.

DEFINITION 1. If, for each increasing (decreasing) sequence $(a_i; i=1, 2, \cdots)$ of elements of $L(\mu)$ with a sum (product) a $\in L$, we have $\lim \mu(a_i) = \mu(a)$ as $i \to \infty$ we say that TL satisfies $B^+(\mu)$ $(B^-(\mu))$; if moreover $\lim \mu(a_i+b) = \mu(a+b)$ and $\lim \mu(a_ib) = \mu(ab)$ as $i \to \infty$ for each $b \in L$, we say that L satisfies $B^+(B^-)$.

REMARK 2. If L satisfies $B^+(B^-)$, then L satisfies $B^+(\mu)$ $(B^-(\mu))$. It suffices to take b = a in the definition of $B^+(B^-)$.

We shall assume throughout the remainder of this note that L is modular and that $\mu(a)$ is monotone increasing.

THEOREM 2. A sufficient condition for closure of $L(\mu)$ with respect to denumerable sums (products) in L is that L satisfy B^+ (B^-). This condition is necessary if L satisfies $B^+(\mu)$ ($B^-(\mu)$).

PROOF. To show that B^+ is sufficient, consider a sequence $(a_i; i=1, 2, \cdots)$ of elements of $L(\mu)$ with a sum $a \in L$. Define $c_i \equiv \sum (a_i; j=1, 2, \cdots, i)$. Clearly $a = \sum c_i$, and $(c_i; i=1, 2, \cdots)$ is increasing. By Theorem 1, $c_i \in L(\mu)$ for each $i=1, 2, \cdots$, and hence $\mu(c_i+b) + \mu(c_ib) = \mu(c_i) + \mu(b)$ for each $b \in L$. On taking the limit and using B^+ we see that $\mu(a+b) + \mu(ab) = \mu(a) + \mu(b)$. Thus $a \in L(\mu)$, and B^+ is sufficient. For the necessity, consider an increasing sequence $(a_i; i=1, 2, \cdots)$ of elements of $L(\mu)$ with a sum $a \in L$. For each $b \in L$ and each $i=1, 2, \cdots, a+b \ge a_i+b$ and $ab \ge a_ib$; and hence $\mu(a+b) \ge \mu(a_i+b)$, $\mu(ab) \ge \mu(a_ib)$. Define $\alpha \equiv \lim \mu(a_i+b)$ and $\beta \equiv \lim \mu(a_ib)$ as $i \to \infty$. Since $a_i \in L(\mu)$ we have $\mu(a_i+b) + \mu(a_ib) = \mu(a_i) + \mu(b)$. On taking the limit and using $B^+(\mu)$ and the fact that $a \in L(\mu)$ we obtain $\alpha + \beta = \mu(a) + \mu(b)$. It follows that $\alpha = \mu(a+b), \beta = \mu(ab)$. Thus B^+ is necessary when L satisfies $B^+(\mu)$. The alternate reading is dual. The proof is complete.

DEFINITION 2. (1) For each $a \in L$ we define $\mu^+(a) \equiv \text{g.l.b.} [\mu(c); c \in L(\mu), c \geq a], \mu^-(a) \equiv \text{l.u.b.} [\mu(c); c \in L(\mu), c \leq a].$

240

[April

⁷ Cf. L. R. Wilcox and the author, op. cit., p. 317.

(2) We say that $\mu(a)$ is outer (inner) regular⁸ in case $\mu(a) = \mu^+(a)$ $(\mu(a) = \mu^-(a))$ for every $a \in L$.

LEMMA 1. If $\mu(a)$ is outer regular, then

$$\mu(a+b) + \mu(ab) \leq \mu(a) + \mu(b)$$

for every $a, b \in L$.

PROOF. Consider $a, b \in L$. For each $c, d \in L(\mu)$ for which $c \ge a, d \ge b$ we have $c+d \ge a+b$, $cd \ge ab$; and, by Theorem 1, c+d, $cd \in L(\mu)$. Consequently, since $\mu(a)$ is outer regular, $\mu(a+b)+\mu(ab) \le \mu(c+d)$ $+\mu(cd) = \mu(c) + \mu(d)$. The lemma follows by applying a simple property of the greatest lower bound.

THEOREM 3. If L satisfies $B^+(\mu)$ $(B^-(\mu))$ and $\mu(a)$ is outer (inner) regular, then L satisfies $B^+(B^-)$.

PROOF. This follows from Lemma 1 and its dual by the method used in proving Theorem 2.

We now assume that L is closed with respect to denumerable sums and products.

LEMMA 2. If L satisfies $B^-(B^+)$, then for each $a \in L$ there is an element $c \in L(\mu)$ such that $c \ge a$ $(c \le a)$ and $\mu(c) = \mu^+(a)$ $(\mu(c) = \mu^-(a))$.

PROOF. This is an easy consequence of Theorem 2.

REMARK 3. It is now clear that when L satisfies B^- and $\mu(a)$ is outer regular the distance function⁹ $\delta(a, b) = 2\mu(a+b) - \mu(a) - \mu(b)$ identifies each $a \in L$ with an element $c \in L(\mu)$.

THEOREM 4. If L satisfies B^+ (B^-) and $\mu(a)$ is outer (inner) regular, then an element $a \in L$ belongs to $L(\mu)$ if and only if $\mu^-(a) = \mu(a)$ $(\mu^+(a) = \mu(a)).$

PROOF. Consider an element $a \in L$ for which $\mu^{-}(a) = \mu(a)$. By hypothesis and Lemma 2 there is an element $c \in L(\mu)$ such that $c \leq a$ and $\mu(c) = \mu^{-}(a)$. Thus, for each $b \in L$, $\mu(a) + \mu(b) = \mu^{-}(a) + \mu(b) = \mu(c) + \mu(b) = \mu(c+b) + \mu(cb) \leq \mu(a+b) + \mu(ab)$. Consequently, by Lemma 1, $a \in L(\mu)$. The converse is trivial. The alternate reading is dual. The proof is complete.

LEHIGH UNIVERSITY

1940]

⁸ Cf. Carathéodory, op. cit., p. 258.

⁹ See L. R. Wilcox and the author, op. cit., p. 311.