
A METHOD FOR PROVING CERTAIN ABSTRACT 
GROUPS TO BE INFINITE1 

H. S. M. COXETER 

1. Introduction. I have stated elsewhere2 that the group (3, 3, 4; 4), 
defined by 

#3 = Sz = (RSy « (2f-i^-ijR5)4 = 1 ? 

is infinite. This fact will now be proved by showing that there is a 
factor group of order 24w4 for every positive integer n. 

We shall find a closely related group of order 48w4, satisfying the 
relations Sz = T2 = (ST)8= (S^TST)* — 1, which have been studied by 
Brahana;3 but there is no overlapping, since his "subgroup H" is not 
invariant in our case, although there still is an abelian invariant sub
group of index 48. In fact, it was the search for such a subgroup that 
led to the simple treatment given here. 

Section 7 is inserted for its intrinsic interest, and can be omitted 
without impairing the proof of the main result (§8). 

2. A group of order n4. Consider the direct product of two cyclic 
groups of order n. Since the defining relations Ml = Ml=M^M^MiMt 
= 1 imply (MiAf2)n = 1, they may be put into the form4 

(1) M i = Ml = Ml = MiM2Mz = M3M2Mi = 1. 

Hence the direct product of four cyclic groups of order n is defined 
by 

MÏ = M1M2M3 = M*M2MX = Nni = NiNtNs = NZN2N! = 1, 

MiNj= NjMi, ij = 1, 2,3. 

3. A group of order 4n4. These relations continue to hold when 
Mi is replaced by Ni, and N7- by Mf1. We now enlarge the group of 
order n4 by adjoining an operator A, of period four, which transforms 
it according to this automorphism. The extra relations that have to 
be added to (2) are 

A4 = 1, A-lMiA = Ni9 A~lN3A = Mjl-

1 Presented to the Society, September 6, 1938. The enumerative method described 
in the abstract (this Bulletin, 44-9-331) seems to be effective only in those cases where 
more orthodox methods are equally effective. 

2 Coxeter [2, p. 101, second footnote], 
3 Brahana [l] . 
4 In the notation of Coxeter [2, p. 87], this is (n, n, n; 1). 
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The enlarged group,8 of order 4#4, may be put into a symmetrical 
form by denning B =AM3, C=N%A, and eliminating the M'sand N's 
by means of the relations 

B-V = J f r ^ r 1 = Mu C~lA = A~lN^A = Mi, A^B = Mt, 

BC-* = NftNf1 = iVi, C^-1 = N2, AB-i = AM^A'1 =NS. 

The result is 

^ 4 = Bt = C 4 = ( 5 C ) 2 = (CAy = (^4^)2 = A-lBC-lAB-MJ 

= (£-1C)n = (C-M)" = {A-^BY = 1. 

These relations imply 

{A^B-^Cy = (BKJ-iA)2 = (C*A-lBy = U - ^ C ) 2 = (B~lC*Ay 

= (C-M2B)2 = 042£2C2)2 = (ABC)* = 1. 

In detail, 

(A2B~lCy = ^~1-vl-15-1C^-^5-1C = A-l-BA-A-lC~l-AB-'C 

= A-1BC-1AB-H: = i, 

= A^BC^AB-K: = i, 

(A*B2C*)2 = ^ 25-5CC^ 25 2C 2 = AWC-^B-^A^B^C2 

= CB^A-t-A-Kl-iBBX:* = CB-yj^B^C2 = C4 = 1, 
G4£C)4 = G 4 5 C 4 - . B C ) 2 = ( 5 - y - 1 ^ c - ^ c - 1 ^ - 1 ) 2 

= (BCUW)-* = 1. 

As one of the relations M" = l is superfluous in (1), so one of the 
consequent relations (B~1C)n=(C~1A)n=(A~lB)n==\. is superfluous 
in (3), say (C"1i4)n = l. In terms of A, B, C and (ABC)'1, (3) takes 
the form 

At-^B* = Ct"D* = ,45CZ> = (BCy = (CM)2 = (ABy = (BDy 

= (A-».B)" = (5-1C)" = (C-1!»)" = (P-14)" = 1, 

implying 

B C - M ^ - 1 ^ - 1 = BC-^ABBBCA-i = CBC-^-M-1)2 = (BDy = 1. 

Of course, the relations (C~lD)n = (D~1A)n = \ (inserted for the 

6 There is an intermediate group, of order 2n*, generated by A2, AB, B2, BC, C2, 
CA, and denned by Tl=Ti<-Ta

t=Ta
t = fl=T't=TiTiTzTj'iTl-(.nTt)"-(TiTt)

n 

= (TzTiY = {TtT6y = {T^TtY = (ZYT,)» = {TiTjTtf = 1, (* <j<fc). 

G45C4-.bc)2
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sake of symmetry) are superfluous; in fact, the rest of (4) implies 
AB~lA-1C=A~1C-AB-\ whence (AD-l)n=(A2BC)n=(AB-1 -A^Q" 
= (AB-1)n(A-lC)n = l, and similarly (D-1C)n=(ABC2)n = (AC-1 

•B-1C)n = (AC-1)n(B-lC)n = l. 

4. A group of order 8«4. The relations (4) continue to hold when 
A, B, C and D are replaced by C~\ D~\ D2A (=DA~1D~l) and BC2 

( = C-15-1C). For, BC, CA, AB, BD, A~lB, B~lC, C~XD, D~lA are 
then replaced by DA, DB, DC, AC, CD~\ D~lA, BA~\ C~XB. Let <P 
denote this automorphism. The repeated automorphism <P2 replaces 
A, B, C, D by DAD~\ C~lBC, BCB~\ A~XDA, and so is equivalent 
to transformation by B C or DA. We now enlarge the group of order 
4»4 by adjoining an operator P, whose square is BC, and which trans
forms the group according to the automorphism fP. The extra rela
tions that have to be added to (4) are 

P2 = BC, P~lAP = C~\ P~lBP = D-\ P-^CP = D*A, P~lDP = BC2. 

Defining Q=AP, so that QP-^A, PQ=B, Q~lP = C, P-'Q'^D, 
we obtain the enlarged group, of order 4w4, in the form 

P4 - Q4 = {PQY = (P -10 4 = {P-^Qr^PQ)2 

= {PQr'PQY = (P-'QPQ)" = 1. 

Since 

(PQ2)2 = PQQPQ2 = BD-XAB = BABCAB 

= A-^A-^C-^B = (B-lCA2)-\ 

( P 2 0 2 = pi.Qp.pQ = BCD-iB = BCABCB 

- -B-^^C-^C- 1 = (C2AB-l)-\ 

p-iQtp-i = c-iA, 

the relations (5) must imply (PQ2)4 = (P2Q)i = (P2Q2)n = l. In terms 
of P, Q and (PQ)-1, we have, therefore, 

O4 = P 4 = Ç4 = OPQ = (QPO)2 = ( P - ^ ) 4 = (Q^O)4 

= (o-^py = (P2Ö2)W = (Q2o2)n = (O2P2)W = l . 

5. A group of order 24n\ To this group of order 8w4 we adjoin an 
operator R, of period three, which transforms the three generators 
according to a cyclic permutation.6 The substitution 0 = RQR~l, 
P = R"~1QR gives us the enlarged group, of order 24w4, in the form 

6 Compare Coxeter [2, p. 96] , 
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(7) ö 4 = * 3 = (QK)Z = (Q^R-Y = (Q^R-'QR)4 = (Q2R^Q2R)n = 1. 

In terms of R and (QP)"-1, this becomes 

(8) R* = Sz = (PS)4 = (P-1^)6 = (R~lS-lRSy = (R-xSRS-lRS)n = 1. 

6. A group of order 48n4. Finally, to the group of order 24^4 we 
adjoin an involutory operator T which interchanges R and 5, obtain
ing 

5 3 = r 2 = (ST)8 = (S-^TST)6 = [ ( S - ^ C S T ) 2 ] 4 

= [(STYT]2n = 1. 

For, if P 2 = 1 and R = TST, we have R^S^RS = TS^TS-1 TSTS and 
R^SRS^RS^iTS^TSTSy^iTST- TSTSTS)2. 

In terms of S P and P, (9) takes the form 

(io) u8 = P2 = (tfr)3 = (u^Tury = {U~2TU2TY = (£/4r)2w = 1. 

7. Other related groups. Several further groups with simple defin
ing relations can be derived from those obtained above. For instance, 
adjoining to (3) an operator V which cyclically permutes A, B, C, 
we obtain the group 

(11) Vz = A4 = (V-'AVA)2 = (VA^VAy = (V^A-WA)" = 1, 

of order 12w4, and we deduce that these relations imply (VA)12 

= (VA2y=i. 
Again, adjoining to (4) an operator X which cyclically permutes 

A, B} C, D, we obtain 

X4 = A4 = {XAY = (X2AY = (X-lAXA)2 = (X^A^XA)- = 1, 

of order 16^4. In terms of X and XA, this becomes 

(12) X4 = F 4 = (XF)4 = (X~lYy = (X2F2)2 = (X^F-^XF)» = 1. 

Concerning (5), it is natural to ask whether the periods of PQ~lPQ 
and P~1QPQ are inevitably equal. The rather surprising answer is, 
as we shall see, tha t by leaving one of them unrestricted we only 
double the order of the group. Since 0, P , Q are interchangeable, this 
means that the group 

(13) P 4 = Ö4 = {PQY = ( P - ! 0 4 = ( P - ^ - i P Q ) 2 = {P2Q2Y = 1 

is of order 16w4, like (12). 
To build up such a group, we begin with the direct product of two 

cyclic groups of orders 2n and n (generated by M% and Ms), which can 
be written in a form resembling (1) : 
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Ml = M 2, M 3 = MxM2Mz = MzM2Mi = 1. 

Instead of (2) we take the group 

Ml = Ml = NÎ - itf, 
Mg = MiMsMs = M3M2Mi = N3 = iViiYWs = N*N*Ni = 1, 

MiNj= NjMi, ij= 1 ,2 ,3 , 

whose order is 2n4 since its general operator can be expressed as 

MiMlN[Nlz\ 0 ^ >̂, q, r, s < n; t = 0 or 1, 

where Z = ikf?. 
Instead of (3) and (4), we derive two equivalent definitions for a 

certain group of order Sn4 : first7 

A4 = B* = C4 = (£C)2 = (C^)2 = G4£)2 = A^BC-'AB-'C 

= ( ^ C - 1 ) ^ - ^ ) * = (^ - i^ ) w « 1, 

and second 

A* = £ 4 = C4 = Z>4 = ,4£CX> = (£C)2 = (C4)2 = (AB)2 = (BD)2 

= {A^B)n = (C-lD)« = 1. 

Finally, instead of (5) we obtain the group, of order 16né, 

PA = <24 = {PQY = ( i > - W = (P-'Q-'PQ)2 = {PQ^PQY = l . 

8. Conclusions regarding infinite groups. The consistency of (8) 
for all values of n shows that the group (3, 314, 6; 4), defined by 
R* = 53 = (RSy = (R-isy = ( i ? - 1 ^ - 1 ^ ) 4 = l', is infinite. The "larger" 
groups8 (3, 314, 6), (3, 3, 4; 4) are infinite a fortiori. Similarly, (5) 
establishes infinite order for (4, 4 | 4, 4; 2), and thence for9 (4, 4, 4; 2). 

9. Comparison with Brahana's groups. The infinite group (2,3, 8 ; 6), 
of which (9) is a factor group, has been investigated by Brahana.10 

His operators 7\, T2l Tz are easily recognized in our factor group 
as BC, AB, D2. Since T2TzTi=CD'D2DA = CA, the subgroup 

'These relations imply (JB-1C)W = (C-M)W=(5C-1)W=(C^-1)W. In detail, 
(c-1^)^(5-lc)w=(c-M)-^(c^-1)w=^-H^^"1)"nW^2)M=^-K^-1Ow(c,-1^)M 

8Coxeter [2, pp. 86, 101 ]. 
9 Coxeter [2, p. 97]. By the method of Coxeter [2, p. 90, §2.5], (12) establishes 

infinite order for (4, 812, 4; 4). This raises an interesting question as to the finite or 
infinite order of (4, 712, 4; 4). 

10 Brahana [l, p. 892]. 
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{Ti, r2 , Ts} is {BC, CA, A3}. This subgroup, being11 {{n, n, n; 2)), 
of order 2n2, is of index 24w2. I t is not invariant,12 since, if it were, 
its index would be just 24. Hence (9) is not one of the groups treated 
in Brahana's main theorems, but is a first step towards the "large 
undertaking" mentioned in his final paragraph.13 
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