A DECOMPOSITION OF ADDITIVE SET FUNCTIONS¹

R. S. PHILLIPS

This paper is concerned with a decomposition theorem for additive functions on an additive family of sets to either real numbers or a Banach space. Additive bounded set functions have as yet been little studied. However the recent paper of Hildebrandt² illustrates their importance.

We shall use the following notation:

(a) T: an abstract class of arbitrary elements t.

(b) 5: a completely additive family of subsets τ of T; that is, T ε 5, $\tau \varepsilon$ 5 implies $T - \tau \varepsilon$ 5, and $\tau_n \varepsilon$ 5 for $n = 1, 2, \cdots$ implies $\sum \tau_n \varepsilon$ 5.

(c) α : a set function on 3 to real numbers.

(d) A: the subclass of set functions on 3 to real numbers which are additive and bounded; that is, τ_1 , $\tau_2 \in 5$ and $\tau_1 \cdot \tau_2 = 0$ implies $\alpha(\tau_1 + \tau_2) = \alpha(\tau_1) + \alpha(\tau_2)$.

(e) C: the subclass of set functions on 3 to real numbers which are completely additive (c.a.), that is, $\tau_n \in 3$ for $n = 1, 2, \cdots$ and $\tau_i \cdot \tau_j = 0$ if $i \neq j$ implies $\alpha(\sum \tau_n) = \sum \alpha(\tau_n)$. The functions in C are bounded.³

The notations A_P and C_P refer to the subclasses of A and C respectively whose elements are nonnegative.

(f) x: a set function on 3 to a Banach space⁴ X. The definitions of additive and c.a. set functions are formally retained. If $\{\tau_n\}$ is a sequence of disjoint sets of 3 and $x(\tau)$ is c.a., then $\sum x(\tau_n)$ is unconditionally convergent.⁵

(g) C_X : the class of c.a. set functions on 5 to X.

In the statement of the following theorems, D will designate any one of the classes A, A_P , C, C_P , and $\overline{\tau}$ will denote the cardinal number of τ .

THEOREM 1. Let \aleph be an infinite cardinal number not greater than \overline{T} . For every $\alpha \in D$ there exists an unique decomposition $\alpha = \alpha_1 + \alpha_2$ and a set $R(\alpha) \in S$ of cardinal number not greater than \aleph such that $\alpha_1, \alpha_2 \in D$,

¹ Presented to the Society April 15, 1939, under the title On additive set functions.

⁴ S. Banach, *Théorie des Opérations Linéaires*, Monografje Matematyczne, Warsaw, 1932, chap. 5.

⁵ If x_n is a series of elements of X and if every subseries $\sum x_n$ is convergent, then $\sum x_n$ is said to be unconditionally convergent.

² T. H. Hildebrandt, On bounded linear functional operations, Transactions of this Society, vol. 36 (1934), pp. 868–875.

⁸ S. Saks, *Theory of the Integral*, Monografje Matematyczne, Warsaw, 1937, p. 10, Theorem 6.1.

$$\alpha_1(\tau) = \alpha(R \cdot \tau), \qquad \alpha_2(\tau) = 0 \quad if \quad \overline{\tau} \leq \aleph \;.$$

Let $\Sigma \equiv E_{\tau}[\tau \ \varepsilon \ \Im, \ \overline{\tau} \leq \aleph, \ \alpha(\tau) \neq 0]$. We define a transfinite sequence $(\tau_1, \tau_2, \cdots; \tau_{\omega}, \cdots, \tau_{\lambda}, \cdots)$ as follows: τ_1 is an arbitrary element of Σ . Suppose τ_{λ} have been defined for all $\lambda < \mu$. If there exists τ such that $\tau \cdot \sum_{\lambda < \mu} \tau_{\lambda} = 0$ and $\tau \ \varepsilon \ \Sigma$, then we set $\tau = \tau_{\mu}$.

As $\alpha(\tau)$ is bounded, $\alpha(\tau)$ cannot differ from zero on a nondenumerable number of disjoint sets. The sequence therefore contains only a denumerable set of elements.

Let $R = \sum_{\lambda \tau \lambda}$. Then $R \in \mathfrak{I}$ and $\overline{R} \leq \aleph$. We define $\alpha_1(\tau) = \alpha(R \cdot \tau)$, $\alpha_2(\tau) = \alpha(\tau) - \alpha_1(\tau) = \alpha(\tau - R \cdot \tau)$. The $\alpha_1(\tau)$, $\alpha_2(\tau)$ are clearly elements of D. If $\overline{\tau} \leq \aleph$, then by the definition of R, $\alpha_2(\tau) = \alpha(\tau - R \cdot \tau) = 0$.

Although the set R is not unique, the function decomposition is unique: Suppose there exist two different sets R_1 , R_2 having the properties of the R defined above. The set identity $R_1 \cdot \tau + (R_2 - R_1) \cdot \tau$ $= R_2 \cdot \tau + (R_1 - R_2) \cdot \tau$ and $\alpha [(R_1 - R_2) \cdot \tau] = 0 = \alpha [(R_2 - R_1) \cdot \tau]$ imply that $\alpha (R_1 \cdot \tau) = \alpha (R_2 \cdot \tau)$.

A set function α on \Im will be said to be *nonsingular* if for every $t \in \Im$, $\alpha(t) = 0$. A set function α on \Im will be called \aleph -homogeneous if there exists a set R such that $R \in \Im$, $\overline{R} = \aleph$, $\alpha(\tau) = \alpha(R \cdot \tau)$, and $\alpha(\tau) = 0$ if $\overline{\tau} < \aleph$.

Without loss of generality we may consider only nonsingular set functions because for every $\alpha \in D$ there exists a unique decomposition $\alpha = \alpha_1 + \alpha_2$ and a denumerable set $\{t_i\}$ of elements of T, such that $\alpha_1, \alpha_2 \in D, \alpha_1(\tau) = \sum_{i=1}^{\infty} \alpha(\tau \cdot t_i)$, and α_2 is nonsingular. We omit the proof.

THEOREM 2. For every nonsingular $\alpha \in D$, there exists an unique decomposition $\alpha = \sum_i \alpha_i$, the sum being absolutely convergent, and such that α_i is \aleph_i -homogeneous and $\aleph_i \neq \aleph_j$ if $i \neq j$.

In the proof of this theorem an induction is made on the infinite cardinals not exceeding that of T, well-ordered according to magnitude. We define a transfinite sequence of set functions $(\alpha_1, \alpha_2, \dots; \alpha_{\omega}, \dots, \alpha_{\lambda}, \dots)$ as follows: Suppose α_{λ} have been defined for all $\lambda < \mu$ and (1) only a denumerable number of the α_{λ} are not identically zero; (2) $\sum_{\lambda \leq \lambda_0} |\alpha_{\lambda}(\tau)| < \infty$; and (3) $\alpha_{\lambda} \in D$ and is \aleph_{λ} -homogeneous. By Theorem 1 there exist $R_{\mu} \in \mathfrak{I}$ and a decomposition $\alpha = \alpha_{\mu}^1 + \alpha_{\mu}^2$ such that $\overline{R}_{\mu} \leq \aleph_{\mu}$, $\alpha_{\mu}^1(\tau) = \alpha(R_{\mu} \cdot \tau)$, $\alpha_{\mu}^2(\tau) = 0$ if $\overline{\tau} \leq \aleph_{\mu}$, and $\alpha_{\mu}^1, \alpha_{\mu}^2 \in D$. Clearly $\alpha_{\lambda}(\tau) = \alpha(R_{\mu} \cdot R_{\lambda} \cdot \tau)$ if $\lambda < \mu$.

Let $\alpha_{\mu}(\tau) = \alpha_{\mu}^{1}(\tau) - \sum_{\lambda < \mu} \alpha_{\lambda}(\tau)$. We consider the following cases:

I. $\alpha \in C$, C_P . Let $\overline{\overline{R}_{\mu}} = R_{\mu} - \sum_{\pi_{\mu}} \overline{R}_{\lambda}$ where $\pi_{\mu} \equiv E_{\lambda} [\lambda < \mu, \alpha_{\lambda} \neq 0]$. The sets \overline{R}_{μ} are disjoint. Suppose $\alpha_{\lambda}(\tau) = \alpha(\overline{R}_{\lambda} \cdot \tau)$ for $\lambda < \mu$. Then by (1)

R. S. PHILLIPS

$$\begin{aligned} \alpha_{\mu}(\tau) &= \alpha(R_{\mu} \cdot \tau) - \sum_{\pi_{\mu}} \alpha_{\lambda}(\tau) = \alpha(R_{\mu} \cdot \tau) - \sum_{\pi_{\mu}} \alpha(R_{\mu} \cdot \overline{R}_{\lambda} \cdot \tau) \\ &= \alpha \left[\left(R_{\mu} - \sum_{\pi_{\mu}} R_{\mu} \cdot \overline{R}_{\lambda} \right) \cdot \tau \right] = \alpha(\overline{R}_{\mu} \cdot \tau) \,. \end{aligned}$$

It is clear that (1), (2), and (3) are satisfied for $\mu+1$. $\alpha_{\lambda} \neq 0$ implies that $\alpha(\tau) \neq 0$ for some subset of \overline{R}_{λ} . As the \overline{R}_{λ} are disjoint, the sequence will contain only a denumerable number of functions not identically zero.

II. $\alpha \in A_P$. For $\lambda_0 < \mu$, $\alpha(T) \ge a_{\lambda_0}^1(T) = \sum_{\lambda \le \lambda_0} \alpha_{\lambda}(T) \ge \sum_{\lambda \le \lambda_0} \alpha_{\lambda}(\tau)$. Clearly (1) and (2) are satisfied for $\mu + 1$, and the sequence contains only a denumerable number of functions not identically zero. Let λ_i be a spanning sequence for $E_{\lambda}[\lambda < \mu, \alpha_{\lambda} \ne 0]$. Then

$$\begin{aligned} \alpha_{\mu}(\tau) &= \alpha_{\mu}^{1}(\tau) - \sum_{\lambda < \mu} \alpha_{\lambda}(\tau) = \alpha(R_{\mu} \cdot \tau) - \lim_{t \to \infty} \alpha_{\lambda_{i}}^{1}(\tau) \\ &= \alpha(R_{\mu} \cdot \tau) - \lim_{t \to \infty} \alpha(R_{\mu} \cdot R_{\lambda_{i}} \cdot \tau). \end{aligned}$$

Hence (3) is likewise satisfied.

III. $\alpha \in A$. Every $\alpha \in A$ has a decomposition $\alpha = \alpha_1 - \alpha_2$ where $\alpha_1, \alpha_2 \in A_P$. An application of II to α_1 and α_2 gives the desired decomposition.

The decomposition is unique: Any two sequences of homogeneous functions differ in a first function, α_{μ} . But this is contrary to $\alpha_{\mu}^{1} = \sum_{\lambda \leq \mu} \alpha_{\lambda}$ being unique.

In these theorems the restriction that the additive bounded set function be defined over an additive family 3 is optional, since the range of definition of such a function can always be extended to an additive family. The type of argument used by Pettis⁶ will prove this statement.

We next consider the possibility of extending these theorems to functions $x(\tau)$ on 3 to a Banach space. The theorem is not in general valid for additive bounded set functions of this type. This is illustrated by $x(\tau)$ defined on all subsets of $T \equiv (0, 1)$ to the space X of bounded functions on $S \equiv (0, 1)$ where $x(\tau)$ is the characteristic function of the subset of S which has the same coordinate values as τ . Clearly there exists no denumerable set R such that $x(\tau - R\tau) = 0$ for all denumerable sets τ .

However analogous theorems are obtained for c.a. set functions on 5 to X.

276

[April

⁶ B. J. Pettis, *Linear functionals and completely additive set functions*, Duke Mathematical Journal, vol. 4 (1938), p. 554, Theorem 1.1.

THEOREM 3. Let \aleph be an infinite cardinal number not greater than \overline{T} . For every $x \in C_X$ there exists a unique decomposition $x = x_1 + x_2$ and a set $R(x) \in \mathfrak{I}$ of cardinal power not greater than \aleph such that $x_1, x_2 \in C_X$, $x_1(\tau) = x(R \cdot \tau), x_2(\tau) = 0$ if $\overline{\tau} \leq \aleph$.

 $x(\tau) \neq 0$ on at most a denumerable number of disjoint sets of 3. Suppose the contrary. Then there exists a denumerable sequence of disjoint sets $\{\tau_i\}$ and an e>0 such that $||x(\tau_i)|| > e$, $(i=1, 2, \cdots)$. As $x(\tau)$ is c.a., $\sum_i x(\tau_i)$ converges. The supposition is therefore false.

The argument used in Theorem 1 will now prove the theorem.

THEOREM 4. For every nonsingular $x \in C_x$, there exists an unique decomposition $x = \sum_i x_i$, the sum being unconditionally convergent, and such that x_i is \aleph_i -homogeneous and $\aleph_i \neq \aleph_j$ if $i \neq j$.

The proof is identical with that of I in Theorem 2. Again there will exist disjoint \overline{R}_{μ} 's such that $x_{\mu}(\tau) = x(\overline{R}_{\mu} \cdot \tau)$.

UNIVERSITY OF MICHIGAN