A DECOMPOSITION OF ADDITIVE SET FUNCTIONS ${ }^{1}$

R. S. PHILLIPS

This paper is concerned with a decomposition theorem for additive functions on an additive family of sets to either real numbers or a Banach space. Additive bounded set functions have as yet been little studied. However the recent paper of Hildebrandt ${ }^{2}$ illustrates their importance.

We shall use the following notation:
(a) T : an abstract class of arbitrary elements t.
(b) J: a completely additive family of subsets τ of T; that is, $T \varepsilon \mathfrak{J}$, $\tau \varepsilon \mathfrak{J}$ implies $T-\tau \varepsilon \mathfrak{J}$, and $\tau_{n} \varepsilon \mathfrak{J}$ for $n=1,2, \cdots$ implies $\sum \tau_{n} \varepsilon \mathfrak{J}$.
(c) α : a set function on J to real numbers.
(d) A : the subclass of set functions on J to real numbers which are additive and bounded; that is, $\tau_{1}, \tau_{2} \varepsilon \mathcal{J}$ and $\tau_{1} \cdot \tau_{2}=0$ implies $\alpha\left(\tau_{1}+\tau_{2}\right)=\alpha\left(\tau_{1}\right)+\alpha\left(\tau_{2}\right)$.
(e) C : the subclass of set functions on J to real numbers which are completely additive (c.a.), that is, $\tau_{n} \varepsilon J$ for $n=1,2, \cdots$ and $\tau_{i} \cdot \tau_{j}=0$ if $i \neq j$ implies $\alpha\left(\sum \tau_{n}\right)=\sum \alpha\left(\tau_{n}\right)$. The functions in C are bounded. ${ }^{3}$

The notations A_{P} and C_{P} refer to the subclasses of A and C respectively whose elements are nonnegative.
(f) x : a set function on J to a Banach space ${ }^{4} X$. The definitions of additive and c.a. set functions are formally retained. If $\left\{\tau_{n}\right\}$ is a sequence of disjoint sets of J and $x(\tau)$ is c.a., then $\sum x\left(\tau_{n}\right)$ is unconditionally convergent. ${ }^{5}$
(g) C_{X} : the class of c.a. set functions on \mathfrak{J} to X.

In the statement of the following theorems, D will designate any one of the classes A, A_{P}, C, C_{P}, and $\bar{\tau}$ will denote the cardinal number of τ.

Theorem 1. Let $\boldsymbol{\aleph}$ be an infinite cardinal number not greater than $\overline{\bar{T}}$. For every $\alpha \in D$ there exists an unique decomposition $\alpha=\alpha_{1}+\alpha_{2}$ and a set $R(\alpha) \varepsilon J$ of cardinal number not greater than $\boldsymbol{\aleph}$ such that $\alpha_{1}, \alpha_{2} \in D$,

[^0]$$
\alpha_{1}(\tau)=\alpha(R \cdot \tau), \quad \alpha_{2}(\tau)=0 \quad \text { if } \quad \bar{\tau} \leqq \aleph .
$$

Let $\Sigma \equiv E_{\tau}[\tau \varepsilon J, \bar{\tau} \leqq N, \alpha(\tau) \neq 0]$. We define a transfinite sequence ($\tau_{1}, \tau_{2}, \cdots ; \tau_{\omega}, \cdots, \tau_{\lambda}, \cdots$) as follows: τ_{1} is an arbitrary element of Σ. Suppose τ_{λ} have been defined for all $\lambda<\mu$. If there exists τ such that $\tau \cdot \sum_{\lambda<\mu} \tau_{\lambda}=0$ and $\tau \varepsilon \Sigma$, then we set $\tau=\tau_{\mu}$.

As $\alpha(\tau)$ is bounded, $\alpha(\tau)$ cannot differ from zero on a nondenumerable number of disjoint sets. The sequence therefore contains only a denumerable set of elements.

Let $R=\sum_{\lambda} \tau_{\lambda}$. Then $R \varepsilon J$ and $\bar{R} \leqq \mathbb{N}$. We define $\alpha_{1}(\tau)=\alpha(R \cdot \tau)$, $\alpha_{2}(\tau)=\alpha(\tau)-\alpha_{1}(\tau)=\alpha(\tau-R \cdot \tau)$. The $\alpha_{1}(\tau), \alpha_{2}(\tau)$ are clearly elements of D. If $\bar{\tau} \leqq \mathbb{\aleph}$, then by the definition of $R, \alpha_{2}(\tau)=\alpha(\tau-R \cdot \tau)=0$.

Although the set R is not unique, the function decomposition is unique: Suppose there exist two different sets R_{1}, R_{2} having the properties of the R defined above. The set identity $R_{1} \cdot \tau+\left(R_{2}-R_{1}\right) \cdot \tau$ $=R_{2} \cdot \tau+\left(R_{1}-R_{2}\right) \cdot \tau$ and $\alpha\left[\left(R_{1}-R_{2}\right) \cdot \tau\right]=0=\alpha\left[\left(R_{2}-R_{1}\right) \cdot \tau\right]$ imply that $\alpha\left(R_{1} \cdot \tau\right)=\alpha\left(R_{2} \cdot \tau\right)$.

A set function α on J will be said to be nonsingular if for every $t \in \mathfrak{J}, \alpha(t)=0$. A set function α on \mathfrak{J} will be called $\mathbb{\aleph}$-homogeneous if there exists a set R such that $R \in \mathfrak{J}, \bar{R}=\boldsymbol{\aleph}, \alpha(\tau)=\alpha(R \cdot \tau)$, and $\alpha(\tau)=0$ if $\bar{\tau}<\boldsymbol{\aleph}$.

Without loss of generality we may consider only nonsingular set functions because for every $\alpha \in D$ there exists a unique decomposition $\alpha=\alpha_{1}+\alpha_{2}$ and a denumerable set $\left\{t_{i}\right\}$ of elements of T, such that $\alpha_{1}, \alpha_{2} \varepsilon D, \alpha_{1}(\tau)=\sum_{i=1}^{\infty} \alpha\left(\tau \cdot t_{i}\right)$, and α_{2} is nonsingular. We omit the proof.

Theorem 2. For every nonsingular α e D, there exists an unique decomposition $\alpha=\sum_{i} \alpha_{i}$, the sum being absolutely convergent, and such that α_{i} is $\boldsymbol{\aleph}_{i}$-homogeneous and $\boldsymbol{\aleph}_{i} \neq \boldsymbol{\aleph}_{i}$ if $i \neq j$.

In the proof of this theorem an induction is made on the infinite cardinals not exceeding that of T, well-ordered according to magnitude. We define a transfinite sequence of set functions ($\alpha_{1}, \alpha_{2}, \cdots ; \alpha_{\omega}, \cdots, \alpha_{\lambda}, \cdots$) as follows: Suppose α_{λ} have been defined for all $\lambda<\mu$ and (1) only a denumerable number of the α_{λ} are not identically zero; (2) $\sum_{\lambda \leqq \lambda_{0}}\left|\alpha_{\lambda}(\tau)\right|<\infty$; and (3) $\alpha_{\lambda} \varepsilon D$ and is \aleph_{λ}-homogeneous. By Theorem 1 there exist $R_{\mu} \varepsilon \mathfrak{J}$ and a decomposition $\alpha=\alpha_{\mu}^{1}+\alpha_{\mu}^{2}$ such that $\bar{R}_{\mu} \leqq \boldsymbol{\aleph}_{\mu}, \alpha_{\mu}^{1}(\tau)=\alpha\left(R_{\mu} \cdot \tau\right), \alpha_{\mu}^{2}(\tau)=0$ if $\bar{\tau} \leqq \boldsymbol{\aleph}_{\mu}$, and $\alpha_{\mu}^{1}, \alpha_{\mu}^{2} \varepsilon D$. Clearly $\alpha_{\lambda}(\tau)=\alpha\left(R_{\mu} \cdot R_{\lambda} \cdot \tau\right)$ if $\lambda<\mu$.

Let $\alpha_{\mu}(\tau)=\alpha_{\mu}^{1}(\tau)-\sum_{\lambda<\mu} \alpha_{\lambda}(\tau)$. We consider the following cases:
I. $\alpha \varepsilon C, C_{P}$. Let $\bar{R}_{\mu}=R_{\mu}-\sum_{\pi_{\mu}} \bar{R}_{\lambda}$ where $\pi_{\mu} \equiv E_{\lambda}\left[\lambda<\mu, \alpha_{\lambda} \neq 0\right]$. The sets \bar{R}_{μ} are disjoint. Suppose $\alpha_{\lambda}(\tau)=\alpha\left(\bar{R}_{\lambda} \cdot \tau\right)$ for $\lambda<\mu$. Then by (1)

$$
\begin{aligned}
\alpha_{\mu}(\tau) & =\alpha\left(R_{\mu} \cdot \tau\right)-\sum_{\pi_{\mu}} \alpha_{\lambda}(\tau)=\alpha\left(R_{\mu} \cdot \tau\right)-\sum_{\pi_{\mu}} \alpha\left(R_{\mu} \cdot \bar{R}_{\lambda} \cdot \tau\right) \\
& =\alpha\left[\left(R_{\mu}-\sum_{\pi_{\mu}} R_{\mu} \cdot \bar{R}_{\lambda}\right) \cdot \tau\right]=\alpha\left(\bar{R}_{\mu} \cdot \tau\right)
\end{aligned}
$$

It is clear that (1), (2), and (3) are satisfied for $\mu+1 . \alpha_{\lambda} \neq 0$ implies that $\alpha(\tau) \neq 0$ for some subset of \bar{R}_{λ}. As the \bar{R}_{λ} are disjoint, the sequence will contain only a denumerable number of functions not identically zero.
II. $\alpha \varepsilon A_{P}$. For $\lambda_{0}<\mu, \alpha(T) \geqq a_{\lambda_{0}}^{1}(T) \equiv \sum_{\lambda \leqq \lambda_{0}} \alpha_{\lambda}(T) \geqq \sum_{\lambda \leqq \lambda_{0}} \alpha_{\lambda}(\tau)$. Clearly (1) and (2) are satisfied for $\mu+1$, and the sequence contains only a denumerable number of functions not identically zero. Let λ_{i} be a spanning sequence for $E_{\lambda}\left[\lambda<\mu, \alpha_{\lambda} \not \equiv 0\right]$. Then

$$
\begin{aligned}
\alpha_{\mu}(\tau) & =\alpha_{\mu}^{1}(\tau)-\sum_{\lambda<\mu} \alpha_{\lambda}(\tau)=\alpha\left(R_{\mu} \cdot \tau\right)-\lim _{i \rightarrow \infty} \alpha_{\lambda_{i}}^{1}(\tau) \\
& =\alpha\left(R_{\mu} \cdot \tau\right)-\lim _{t \rightarrow \infty} \alpha\left(R_{\mu} \cdot R_{\lambda_{i}} \cdot \tau\right) .
\end{aligned}
$$

Hence (3) is likewise satisfied.
III. $\alpha \in A$. Every $\alpha \varepsilon A$ has a decomposition $\alpha=\alpha_{1}-\alpha_{2}$ where $\alpha_{1}, \alpha_{2} \varepsilon A_{P}$. An application of II to α_{1} and α_{2} gives the desired decomposition.

The decomposition is unique: Any two sequences of homogeneous functions differ in a first function, α_{μ}. But this is contrary to $\alpha_{\mu}^{1}=\sum_{\lambda \leqq \mu} \alpha_{\lambda}$ being unique.

In these theorems the restriction that the additive bounded set function be defined over an additive family \mathcal{J} is optional, since the range of definition of such a function can always be extended to an additive family. The type of argument used by Pettis ${ }^{6}$ will prove this statement.

We next consider the possibility of extending these theorems to functions $x(\tau)$ on J to a Banach space. The theorem is not in general valid for additive bounded set functions of this type. This is illustrated by $x(\tau)$ defined on all subsets of $T \equiv(0,1)$ to the space X of bounded functions on $S \equiv(0,1)$ where $x(\tau)$ is the characteristic function of the subset of S which has the same coordinate values as τ. Clearly there exists no denumerable set R such that $x(\tau-R \tau)=0$ for all denumerable sets τ.

However analogous theorems are obtained for c.a. set functions on J to X.

[^1]Theorem 3. Let $\boldsymbol{\aleph}$ be an infinite cardinal number not greater than $\overline{\bar{T}}$. For every $x \in C_{X}$ there exists a unique decomposition $x=x_{1}+x_{2}$ and a set $R(x) \varepsilon \mathfrak{J}$ of cardinal power not greater than \mathfrak{N} such that $x_{1}, x_{2} \varepsilon C_{X}$, $x_{1}(\tau)=x(R \cdot \tau), x_{2}(\tau)=0$ if $\bar{\tau} \leqq N$.
$x(\tau) \neq 0$ on at most a denumerable number of disjoint sets of \Im. Suppose the contrary. Then there exists a denumerable sequence of disjoint sets $\left\{\tau_{i}\right\}$ and an $e>0$ such that $\left\|x\left(\tau_{i}\right)\right\|>e,(i=1,2, \cdots)$. As $x(\tau)$ is c.a., $\sum_{i} x\left(\tau_{i}\right)$ converges. The supposition is therefore false.

The argument used in Theorem 1 will now prove the theorem.
Theorem 4. For every nonsingular $x \varepsilon C_{X}$, there exists an unique decomposition $x=\sum_{i} x_{i}$, the sum being unconditionally convergent, and such that x_{i} is $\boldsymbol{\aleph}_{i}$-homogeneous and $\boldsymbol{\aleph}_{i} \neq \boldsymbol{\aleph}_{i}$ if $i \neq j$.

The proof is identical with that of I in Theorem 2. Again there will exist disjoint \bar{R}_{μ} 's such that $x_{\mu}(\tau)=x\left(\bar{R}_{\mu} \cdot \tau\right)$.

University of Michigan

[^0]: ${ }^{1}$ Presented to the Society April 15, 1939, under the title On additive set functions.
 ${ }^{2}$ T. H. Hildebrandt, On bounded linear functional operations, Transactions of this Society, vol. 36 (1934), pp. 868-875.
 ${ }^{3}$ S. Saks, Theory of the Integral, Monografje Matematyczne, Warsaw, 1937, p. 10, Theorem 6.1.
 ${ }^{4}$ S. Banach, Théorie des Opérations Linéaires, Monografje Matematyczne, Warsaw, 1932, chap. 5.
 ${ }^{5}$ If x_{n} is a series of elements of X and if every subseries $\sum x_{n}$ is convergent, then $\sum x_{n}$ is said to be unconditionally convergent.

[^1]: ${ }^{6}$ B. J. Pettis, Linear functionals and completely additive set functions, Duke Mathematical Journal, vol. 4 (1938), p. 554, Theorem 1.1.

