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1. Introduction. In a recent note1 the present writers studied the 
relation between the continuity properties of a function and the de
gree of approximation in the sense of Tchebycheff by trigonometric 
and other polynomials; this approximation in the js-plane is consid
ered either on the unit circle by polynomials in z and 1/s, or on the 
segment — l ^ z ^ l by polynomials in z, or (for functions of period 
2T) on the infinite interval — <x> <z< <*> by trigonometric polyno
mials. In the respective cases, the functions approximated are ana
lytic in an annulus p > | s | > l / p < l , in an ellipse whose foci are 
+ 1 and — 1, or in a horizontal strip containing the axis of reals in 
its interior. I t is the purpose of the present note to establish the 
analogous results when approximation is measured by the integral 
of the pth. power of the error, as in the sense of least pth powers. 

The method we employ makes essential use of the specific results 
concerning Tchebycheff approximation as developed in our previous 
note, together with certain general methods already developed else
where.2 

2. Approximation on the unit circle. Our main result is as follows: 

THEOREM 1. Let the weight f unction w{6) be positive and continuous 
for all values of 0, and of period 2ir. Let the f unction f {d) {not necessarily 
real) be periodic with period 2-K, and suppose the numbers anj- and bnj {not 
necessarily real) are given so that 

Sn{Q) = — + ] £ fan ƒ cos j$ + bnj sin jO), 
2 , - i 

with the relation y f or n = l, 2, • • • , 

(i) Ç'w(e) | ƒ(*) - sn(e) |ue < ™ , 

0 < a S 1, p > 0, p > 1, 

1 This Bulletin, vol. 44 (1938), pp. 865-873. We shall refer to this note as WS. 
2 Walsh, Interpolation and Approximation by Rational Functions in the Complex 

Domain^ American Mathematical Society Colloquium Publications, vol. 20, New-
York, 1935. 
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where k is a nonnegative integer and M is a constant independent of n. 
Then the function 

F(z) = Hm \cn0 + X) (Cn,-jZ~3' + CnjZi) , 
(2) n-**> L 3=1 J 

ZCnj = anj Wnji ^Cny—j == dnj "f- Wnj, 

coincides with f (0) almost everywhere (everywhere if}'(d) is continuous) 
on the circle \z\ = 1, with 0 = cos d+i sin 6, and F(z) is analytic in the 
annulus p > \ z\ >l/p and continuous in the corresponding closed region. 
For zi and z2on \z\ = p or 1/p we havez 

(3) | F<*>(S!) - F<«(»0 | g L | *i - *t |«- | log | «i - «, | K 

where (3 = 0 if a<l and |8 = 1 if a = 1, cmd w/iere L is a constant inde
pendent of 0i a^J 02. 

As a matter of convenience in the proof of Theorem 1 we establish 
a preliminary proposition : 

LEMMA. Let C be a rectifiable Jordan curve in the z-plane containing 
z = 0in its interior ; let P (0, 1 /z) be a polynomial in 0 and 1 /z of degree n : 

P(s, l / * ) s P i ( * ) + P,(«), 

PiO) = ao + aiz + • • • + aw2w, 

P2O) = tf-iz"1 + a_20~2 + • • • + a-nz~n, 

and suppose 

(4) f |P(», l/s)|*|<fo| ^ ^ , ^ > 0. 
J c 

Denote by w=fi(z) a function which maps the exterior of C onto | w\ > 1 
50 that fi(co)= 00, #wd denote by w=f2(z) a function which maps the 
interior of C onto \w\ < 1 so that f2(0) = 0 ; denote by CR the closed annu
larregion bounded by the two Jordan curves \fi(z)\ =R>1, \f2(z) | = l/i£. 

Then there exists a constant N' depending on C, p, and R but not on 
P(z, I/0) nor on n, such that (4) implies 

|P(fc 1/0)| S NN'Rn, zmCR. 

By a known method of proof (Walsh, op. cit., p. 92) we have for 
suitably chosen N' 

3 The notation FW(z) indicates the kih derivative of F(z) if k >0 and the function 
F(z) itself for k — 0. Here and below such derivatives on the boundaries of regions of 
analyticity are considered in the one-dimensional sense. 



314 J. L. WALSH AND W. E. SEWELL [April 

| P(z, 1/z) | ^ NN'Rn, z on curve | fx(z) | = R; 

| P(«, 1/z) | ^ AW'P», z on curve | ƒ,(«) | = 1/P. 

The lemma follows at once.4 

We proceed now with the proof of Theorem 1. From (1) by the 
well known general inequalities 

| x i + X * M 2 * - 1 | x i | * + 2*- 1 | x« | p , # > 1, 

| Xi + X2|
2> ^ I Xi|p + I X2^, 0 < p £ 1, 

and by virtue of the boundedness of l/w(d), we have 

(6) *n+i(0) - * » ( 0 ) M " 

On the circle | z\ = 1 we have cos j8 = (3 '+*- ' ) /2 , sin jfl = (s'—£r0/2i, 
so the first member of (6) can be written 

ƒ Pn+lfo 1/S) - Pn(», 1 / « ) | H & | , 
« 1 - 1 

where Pn(z, 1/z) is a polynomial of degree n in z and 1/z, equal to 
sn(6) on 131 = 1 . From inequality (6) we now deduce through the 
lemma for p è \z\ S^l/p, 

(7) | Pn+1(z, 1/z) - Pn(z, 1/z) | ^ M%/n***\ 

where M^ is independent of n and s. We define F(z) for p ^ | z\ ^ 1/p 
by means of the equation 

FOO s px(«, 1/,) + [p2(*, 1/.) - j y , , 1/.)] 

+ [Pz(z9 1/z) - P*(z, 1/z)] + • - • , 

whence from (7) we have for p è | s | ^ 1 / p 

I F(z) - Pn(», 1/*) I ^ I Pw+1(s, 1/s) - Pn(«, 1/s) I 

+ I Pn+*(Z, 1/Z) - Pn+1(*, 1/Z) I + ' • ' 

- 1 Jf, 

where ikf3 is independent of n and z. 
The uniformity of the convergence in (8) is included in the inequali

ties (9), so it follows that F(z) is analytic for p > | z\ > 1/p, continuous 
4 So far as the writers are aware, this explicit lemma has not been previously 

formulated in print, but indications of it are given by Walsh, American Journal of 
Mathematics, vol. 54 (1932), pp. 559-570. 



i94o] APPROXIMATION TO AN ANALYTIC FUNCTION 315 

for p ^ \z\ ^ 1 / p ; and since Pn(z, l/z) on \z\ = p and \z\ = l / p is a 
trigonometric polynomial of order n, it follows from a theorem due to 
de la Vallée Poussin5 that F(z) satisfies an inequality with respect to 6 
of form (3), z = peie or eie/p, from which it follows that inequality (3) 
itself is fulfilled on \z\ = p and \z\ = 1/p. 

The boundedness of l/ze;(2;) implies from (1) 

ƒ. \M-sn(e)\»dog 
pnpn(k+a+l)p 

Inequality (9) implies, from the equality of Pn(z, 1/s) and sn(0) on 

1 * 1 = 1 » 

ƒ. \F(P) -sn(e)\"d$^ 
%(k+a)p 

so we now deduce by use of (5) and by allowing n to become infinite 

ƒ. \F(z)-f(d)\*>dd = 0; 

hence F(z) and f'(d) are equal almost everywhere on \z\ = 1, and 
Theorem 1 is established. 

3. Approximation on the segment — l ^ s ^ l . We shall indicate 
rapidly the proof of the next theorem. 

THEOREM 2. Let f(z) be defined on the segment • — l ^ s ^ l , and for 
n — 1, 2, • • • let a polynomial Pn(z) in z of degree n exist such that 

(10) w(z)\f(z)-Pn(z)\*dz£ 7TTT^-> 

0 < a g l , # > 0 , p > l , 

where k is a nonnegative integery and where w(z) (1 —z2)112 is positive and 
continuous on — l^z^l. jH&ew the function f(z) is equal to F{z) almost 
everywhere on the segment — 1 SzS 1, severe 

(11) F(«) = limPw(s). 
n—>oo 

Furthermore F(z) is analytic throughout the interior of the ellipse y whose 
foci are + 1 and — 1 and the sum of whose semi-axes is p ; also F(z) is 
continuous in the corresponding closed region, and satisfies an inequality 
of type (3) on y. 

1 Leçons sur VApproximation, Paris, 1919, chap. 4. 
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We map the z-plane onto the w-plane by the transformation 
z = (w+w~1)/2, which carries the segment — l^z^l counted twice 
into the unit circle \w\ = 1, and carries the ellipse y counted twice 
into the two circles \w\ = p, \w\ = l / p . The first member of (10) can 
be written 

— f W(S) | ƒ(*) - P»(«) | P (1 - * 2 ) X / 2 \dw\, 
2 J \w\=i 

so Theorem 1 applies (cf. WS for further details of the transformation 
and reasoning). A condition of form (3) on \w\ =p and \w\ = l / p 
with respect to w implies condition (3) as stated in Theorem 2, so the 
conclusion follows. 

Another method of studying the situation of Theorem 2 is to avoid 
the transformation onto the w-plane, but to use the fact that for a 
polynomial P(z) of degree n the inequality JLi\P(z)\pdz^Np, p>0, 
implies | P(z) | ^ NN'Rn on and within6 y. Here it is natural to assume 
that w(z) itself is positive and continuous rather than w(z)(l— s2)1/2. 
We deduce as in the proof of Theorem 1 an inequality analogous to 
(9) giving the degree of convergence of the sequence Pn(z) to F{z) 
on 7 ; this degree of convergence then implies7 inequality (3) on y, 
as we wish to prove. Thus we have proved the following theorem : 

THEOREM 2a. Theorem 2 remains true if the requirement that 
w(z){\—z2)112 is positive and continuous on — l f g s ^ l is replaced by 
the requirement that w{z) be positive and continuous on — l ^ s ^ l . 

4. Approximation to a periodic function on the axis of reals. A dif
ferent transformation of the plane will now yield a new result: 

THEOREM 3. Let the function f {z) be periodic with period 2w, and for 
n = l, 2, • • • let there exist a trigonometric polynomial tn(z) of order n 
such that we have 

w(z) ƒ(«) - tn(z) \pdz S _ _ i 0 < a ^ 1, # > 0, p > 1, 
_ff pnpn(k+cc+l)p 

where the weight function w(z) is a positive, continuous function 
of period 2ir, and k is a nonnegative integer. Then if we define 
F(z) =limnH>00 tn(z), where tn(z) is still expressed as a trigonometric 
polynomial, the two functions f{z) and F(z) are equal almost everywhere 

6 Walsh, op. cit., Lemma, p. 92. 
7 Walsh and Sewell, this Bulletin, vol. 43 (1937), pp. 557-563. This method of 

proof of Theorem 2a is used widely in a number of similar situations in a forthcoming 
paper by the present writers, on "Problem p." 
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on the axis of reals. Moreover if z = x+iy, the function F(z) is analytic 
for \y\ <log p, continuous in the corresponding closed region, and on 
the lines y= ±log p satisfies an inequality of type (3). 

Theorem 3 is a direct consequence of Theorem 1, by virtue of the 
transformation w = eiz, in the notation of Theorem 3 (compare WS, 
proof of Theorem 5). 

5. Convergence properties of sequences. The methods of proof of 
Theorems 1,2, and 3 apply also to the study of the degree of conver
gence of the sequences involved on various point sets not yet men
tioned. Thus under the hypothesis of Theorem 1, the method already 
used shows that in the annulus p i ^ | z\ ^ 1/pi, P i<p , we have instead 
of (7) 

I Pn+1(z, 1/z) - Pn(z, 1/JS) I ^ 

Then for p i ^ | z\ ^ 1/pi we may write 

\F(Z) - P.(«, 1/Z) I g I Pn+l(Z, 1/Z) ~ Pn(z, 1/0) I 

+ I Pn+2(z, l/z) - Pn+1(z, 1/z) I + 

s„i;_é_aJîL£(iYs_îC!i. 
That is to say, we have established a further result: 

COROLLARY TO THEOREM 1. Under the hypothesis of Theorem 1 we 
have in the annulus pi^\z\ i^l /pi , P i < p , 

, , M'p*i 
| F ( * ) ~ P . ( * , l / s ) | £ pnnk+a+l 

where Mf is a suitably chosen constant independent of n and z. 

The corollary just established implies corresponding statements 
connected with Theorems 2 and 3. 

COROLLARY TO THEOREM 2 (OR THEOREM 2a). Under the hypothesis 
of Theorem 2 (or Theorem 2a) we have for z on and within the ellipse 
whose foci are +1 and —1 and whose sum of semi-axes is p i < p 

, , M'p\ 
\F(z) - Pn(z)\ Ik pnnk+a+l 

where Mr is a suitably chosen constant independent of n and z. 
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In the proof of the Corollary to Theorem 2a we employ the method 
of proof of Theorem 2a rather than the Corollary to Theorem 1 itself. 

COROLLARY TO THEOREM 3. Under the hypothesis of Theorem 3 we 
have for z in the region \ y | <log pi <log p 

\F(z) - /» (* ) ^ — , 

where M' is a suitably chosen constant independent of n and z. 

I t may be noted that the inequalities representing the conclusions 
of these corollaries, with the obvious understanding that these func
tions Pn(z, l/z)» Pn(z)j tn(z) are polynomials of the kind considered 
of respective degree n, themselves imply the conclusions of Theorems 
1, 2 (or 2a), and 3 (compare WS, Theorems 1, 3, and 5). 

6. Reciprocal theorems. In the direction of a converse of Theorem 
1 we indicate the proof of the following result : 

THEOREM 4. Let the function F(z) be analytic for p > | z | > l / p < l , 
continuous in the corresponding closed region, and let Fw(z), k a non-
negative integer, satisfy a Lipschitz condition* of order a on \z\ = p and 
\z\ = l / p . Let p>0 be given. Let w(d) be a nonnegative function of 0, 
periodic with period 2T, and Lebesgue-integrable for —T^O^IT. Then 
there exists a sequence of polynomials Pn(z, l/z) in z and l/z of degrees 
n = 1, 2, • • • so that we have 

w(e) F(z) - pn(z, l/z) \»dd ̂  ——, 
_ T pnpn(k+a)p 

where M is a suitably chosen constant independent of n and z. 

Theorem 4 is an immediate consequence of the corresponding theo
rem for Tchebycheff approximation (WS, Theorem 2). We add the 
remark that the conclusion of Theorem 4, holding for some sequence 
Pn(z, I/2), holds a fortiori for the sequence Pn(z, l/z) of best approxi
mation in the sense of least £th powers. The Corollary to Theorem 1 
applies to the latter. 

Corresponding results in the directions of converses of Theorems 2, 
2a, and 3 can be proved with no less ease. 

I t will be noticed that there is a discrepancy of unity between the 
exponents of n in Theorems 1 and 4. This discrepancy is not acci-

8 Tha t is to say, let (3) be satisfied with /3 = 0. 
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dental, but is inherent in the nature of the problem, as is shown by 
examples that the authors plan to publish elsewhere. 

7. Generality of weight functions. The mere casual comparison of 
Theorems 2 and 2a suggests that the particular restrictions we have 
placed on the weight functions are artificial rather than essential to 
the problem. The most general weight function that can be employed 
seems to be difficult to determine, both here and in the case of poly
nomial approximation purely in the real domain. Nevertheless we 
shall prove the following additional proposition : 

THEOREM 5. Theorems 1, 2, 2a, and 3 persist if the requirement that 
the respective weight functions w(6)f w(z)(l—z2)112, w{z)y w(z) be posi
tive and continuous is replaced by the requirement that the weight func
tions be nonnegative, Lebesgue-integrable, and that some negative power 
of the corresponding weight f unctions be Lebesgue-integrable.9 

The situation of Theorem 1 is typical. Under the new assumption of 
Theorem 5 we assume [w(d)]~~P to be integrable in the interval 
— 7r^05^7T, with j8>0. The Holder inequality 

f/rç?1-* = ( f \ F \ ) ( f \ G \ ) > o < Ô < î , 

with ô = 1/ (1+0) , gives 

ƒ *\f(fi) -sn(0)\*u-»dO 

* (r.K,)]°.-».)'d>>|/w - ^-T-
and by virtue of (1) we have 

f (fi) - sn(fi) \^-»dd S 

This last inequality leads to an inequality similar to (6) and thence 
as before to the conclusion of Theorem 1. 

HARVARD UNIVERSITY AND 

GEORGIA SCHOOL OF TECHNOLOGY 

9 This condition on the weight functions has been previously used by Dunham 
Jackson in the study of approximation in the real domain, and by Walsh (op. cit., 
pp. 104-105) in the complex domain. 


