By Theorem 2, the solutions of the equation (17) are given by (16).
If $x_{i}=\rho_{i}, y_{k}=\sigma_{k}$ is any solution of (13) and we choose $\alpha_{i}=\rho_{i}, \mu_{k}=\sigma_{k}$, $\lambda=f(\rho)$, we have that $s=0$ and the solution becomes $x_{i}=\rho_{i} K^{n-1}$, $y_{k}=\sigma_{k} K^{n+1}$, where $K=A \lambda(A D-B C)$, which is equivalent to the given solution provided $K \neq 0$; that is, provided $x_{i}=\rho_{i}, y_{k}=\sigma_{k}$ is not a solution of (14). It will be noted that if $K \neq 0$, then $t \neq 0$.

Louisiana State University

A MULTIPLE NULL-CORRESPONDENCE AND A SPACE CREMONA INVOLUTION OF ORDER $2 n-1^{1}$

EDWIN J. PURCELL
Part I. A null-system ($1, m n, m+n$) between the planes AND POINTS OF SPACE ($m, n=1,2,3, \cdots$)

1. Introduction. Consider a curve δ_{m} of order m having $m-1$ points in common with a straight line d, and a curve $\delta_{n}{ }^{\prime}$ of order n having $n-1$ points in common with a straight line $d^{\prime},(m, n=1,2,3, \cdots)$. It is assumed for the present that neither δ_{m} nor d intersects either $\delta_{n}{ }^{\prime}$ or d^{\prime}.

In general, through any point P of space there passes one ray ρ which intersects δ_{m} once and d once, and one ray ρ^{\prime} which intersects $\delta_{n}{ }^{\prime}$ once and d^{\prime} once; ρ and ρ^{\prime} determine a plane π, the null-plane of P. Conversely, a plane π determines m rays ρ_{i} and n rays ρ_{i}^{\prime} lying in it which intersect, a ray ρ with a ray ρ^{\prime}, in $m n$ points, the null-points of the plane π.

Any point α in general position determines a ray ρ. As α describes a line l, the plane π of ρ and l contains n rays ρ^{\prime}, which intersect l in n points β; conversely, any point β on l determines a ray ρ^{\prime} which determines with l the plane π, and π contains m rays ρ which intersect l in m points α-one being the original α. Thus an (m, n) correspondence is set up among the points of l with valence zero; there are $m+n$ coincidences and therefore $m+n$ points on any line l whose nullplanes contain l.
2. Planes whose null-points behave peculiarly. We can obtain the last result by another method; this will yield additional information about planes whose null-points behave peculiarly.

Let a plane π turn about a line l as axis. A ruled surface will be generated by the m rays ρ_{i} lying in π. This surface is of order $m+1$; δ_{m} is a onefold curve on the surface and d is an m-fold line. Another

[^0]ruled surface will be generated in this manner by the rays ρ_{j}^{\prime} lying in π; its order is $n+1, \delta_{n}^{\prime}$ is a onefold curve and d^{\prime} is an n-fold line on this surface. The curve of intersection of these two surfaces is of order $(m+1)(n+1)$ and consists of l and a twisted curve $k_{m n+m+n}$ of order $(m+1)(n+1)-1=m n+m+n$. This $k_{m n+m+n}$ is the locus of the nullpoints of all planes π through l.

Since a plane π meets this in $m n$ points outside $l, k_{m n+m+n}$ must intersect l in $m+n$ points through each of which a ray ρ and a ray ρ^{\prime} pass which are coplanar with l. Call such a point on l, P. The plane $\rho \rho^{\prime}$ is the null-plane of P and has $m n-1$ null-points outside l, and it follows that plane $\rho \rho^{\prime}$ is tangent to $k_{m n+m+n}$ at P. The null-planes of the $m+n$ points of intersection of $k_{m n+m+n}$ with l are tangent planes of $k_{m n+m+n}$ at these points.

The line d, an m-fold line on the first of the two surfaces described above, intersects the second surface in $n+1$ points, which are m-fold points on the first surface. The line d^{\prime} intersects the first of the two surfaces in $m+1$ points which are n-fold points on the second surface. These points all lie on $k_{m n+m+n}$ and the $m+1$ are n-fold points of it and $n+1$ are m-fold points of it. $k_{m n+m+n}$ has $m+1 n$-fold points on d^{\prime} and $n+1 m$-fold points on d.
δ_{m} has no actual double points or other multiple points. It is, however, rational and has $(m-1)(m-2) / 2$ apparent double points and its rank is $r=m(m-1)-(m-1)(m-2)=2(m-1)$; that is, the order of its developable surface is $2(m-1)$. Similarly, the order of the developable surface of $\delta_{n}{ }^{\prime}$ is $2(n-1)$. The line l will intersect $2(m-1)$ tangents of δ_{m} and $2(n-1)$ tangents of $\delta_{n}{ }^{\prime}$. In the plane π through l and a tangent line t of the first group, two rays ρ coincide in the line which joins the point of tangency of t with the intersection of d and π. Of the $m n$ null-points in the plane π, n lie on each of the other $m-2$ rays ρ, and $2 n$ fall two and two together on the coinciding rays; in these points $k_{m n+m+n}$ is tangent to the plane of l and t and the number of these planes is $2(m+n-2)$.

From the discussion of this section we have the following conclusions:
(1) The planes, m of whose null points coincide with a point of d, envelope a surface of class $n+1$; and the planes, n of whose null points coincide with a point of d, envelope a surface of class $m+1$.
(2) The planes, $2 n$ of whose null-points coincide two and two on a ray ρ, envelope a surface of class $2(m-1)$, n of the remaining null-points lying on each of the other $m-2$ rays ρ; the planes, $2 m$ of whose nullpoints coincide two and two on a ray ρ^{\prime}, envelope a surface of class
$2(n-1), m$ of the remaining null-points lying on each of the other $n-2$ rays ρ^{\prime}.

Consider a plane π through l, whose intersection with d is also an intersection with δ_{m}. Call this common point of d and δ_{m}, Δ. Then the rays ρ_{i} lying in π will be the $m-1$ lines joining Δ to the $m-1$ points of intersection of δ_{m} and π, not lying on d, and the line λ joining Δ to the intersection of l and the plane of d and the tangent line to δ_{m} at Δ. This line λ will be the limiting position of a ray ρ as a plane revolves about l into the position of π.

In the osculating planes of δ_{m} and $\delta_{n}{ }^{\prime}$, three rays coincide. Therefore, in the osculating planes of $\delta_{m}, 3 n$ of the null-points coincide three and three on the triple ray; in the osculating planes of $\delta_{n}{ }^{\prime}, 3 m$ of the nullpoints coincide three and three on the triple ray.
3. Points whose null-planes behave peculiarly. Consider a point P on d. The point P determines one ρ^{\prime}. Any plane π through ρ^{\prime} determines m rays ρ through P. Therefore π counts m times as null-plane of P. Conversely, for every plane through ρ^{\prime} there fall m null-points together at P. The surface of class $n+1$ mentioned in $\S 2$ must have the planes π as tangent planes. This surface is a ruled surface consisting of rays ρ^{\prime} which intersect d, and conversely. Call this surface Σ.

The surface formed by rays ρ^{\prime} which intersect a general straight line l is ($\S 2$) of order $n+1$, and d intersects this surface in $n+1$ points. Thus there are n rays ρ^{\prime} which intersect d and also an arbitrary line l. Therefore the surface Σ is of degree $n+1$. The line d is a onefold directrix on Σ_{n+1} and d^{\prime} is an n-fold directrix; for, the n-ic cone of $\delta_{n}{ }^{\prime}$ projected from a point of d^{\prime} will intersect d in n points. The locus of points whose null-planes have m null-points coinciding is Σ_{n+1}.

Similarly, the ruled surface $\Sigma_{m+1}{ }^{\prime}$ of order $m+1$, consisting of rays ρ that intersect d^{\prime}, is the locus of points whose null-planes have n nullpoints coinciding.

Now Σ_{n+1} and Σ_{m+1}^{\prime} have $m n+1$ generators in common. For the congruence of rays ρ has the characteristic ($1, m$) and the congruence of rays ρ^{\prime} has the characteristic $(1, n)$ so that, from Halphen's theorem, ${ }^{2}$ there are $1 \cdot 1+m \cdot n=m n+1$ common rays.

Since both rays ρ and ρ^{\prime} through any point on one of these $m n+1$ common rays coincide, any plane through the ray can be taken as null-plane of the point. Every plane of the pencil through any one of the $m n+1$ common rays has m null-points coinciding on d and n nullpoints coinciding on d^{\prime}.

[^1]The intersection of Σ_{n+1} and $\Sigma_{m+1}{ }^{\prime}$ is of degree $(n+1)(m+1)$. Since d^{\prime} was shown to be an n-fold line on Σ_{n+1} and is clearly a onefold line on $\Sigma_{m+1}^{\prime}, d^{\prime}$ therefore counts n times in the intersection of these two surfaces. Similarly d counts m times in the intersection. Each of the $m n+1$ common rays of the two congruences counts once in the intersection. The parts just enumerated have total degree $n+m+m n+1$ $=(n+1)(m+1)$. Therefore, the locus of points whose null-planes have m null-points coinciding in one point and n null-points coinciding in another consists of the lines d and d^{\prime} and the $m n+1$ common rays of the two congruences.

Now consider a plane containing d; let it intersect d^{\prime} in D^{\prime} and δ_{n}^{\prime} in n points N_{i}. Every point of the n lines $D^{\prime} N_{i}$ is a null-point of this plane-similarly for planes through d^{\prime}.

Let point P be on δ_{m} but not on d. One ρ^{\prime} is determined but every line from P to d will be a ρ. Therefore, any point of δ_{m} or $\delta_{n}{ }_{n}$ not also a point of d or d^{\prime} has the pencil of planes through the ray of the opposite congruence as null-planes.

Part II. A space cremona involution of order $2 n-1$ (n ANY INTEGER)

4. Definition. Not every skew curve of order n has a secant meeting it in $n-1$ points, and some have only one such secant, but there are also skew curves of order n that have two ($n-1$)-secant lines. In such case they lie on a quadric surface and have a singly infinite system of such secants. The two selected must be two generators of the same regulus.

Consider a fixed twisted curve δ_{n} of order n having $n-1$ points in common with a fixed line d and $n-1$ points in common with another fixed line d^{\prime}. This construction occurs when the two twisted curves δ_{n}^{\prime} and δ_{m} in Part I are identical but lines d and d^{\prime} remain skew to each other.

A general point P determines a unique line intersecting δ_{n} once, at A, and d once, at D, and a unique line intersecting δ_{n} once, at B, and d^{\prime} once, at D^{\prime}. We define P^{\prime}, the correspondent of P, to be the intersection of lines $A D^{\prime}$ and $B D$. It is an involution.
5. Equations. Let d be $x_{1}=0, x_{2}=0$, and d^{\prime} be $x_{3}=0, x_{4}=0$, and the parametric equations of δ_{n} be

$$
\begin{aligned}
& x_{1}=(a s+b t) \prod_{1}^{n-1}\left(t_{i} s-s_{i} t\right), \quad x_{2}=(c s+d t) \prod_{1}^{n-1}\left(t_{i} s-s_{i} t\right), \\
& x_{3}=(e s+f t) \prod_{n}^{2 n-2}\left(t_{i} s-s_{i} t\right), \quad x_{4}=(g s+h t) \prod_{n}^{2 n-2}\left(t_{i} s-s_{i} t\right),
\end{aligned}
$$

where $\left(s_{i}, t_{i}\right),(i=1,2, \cdots, n-1)$, are values of the parameter at the $n-1$ points of δ_{n} on d, and for $i=n, n+1, \cdots, 2 n-2$ are values of the parameter at the $n-1$ points of δ_{n} on d^{\prime}. Then the equations of the involution are

$$
\begin{aligned}
& x_{1}^{\prime}=(a d-b c)\left\{(a h-b g) x_{3}-(a f-b e) x_{4}\right\} \prod_{1}^{n-1} \alpha_{i} \prod_{1}^{n-1} \beta_{i}, \\
& x_{2}^{\prime}=(a d-b c)\left\{(c h-d g) x_{3}-(c f-d e) x_{4}\right\} \prod_{1}^{n-1} \alpha_{i} \prod_{1}^{n-1} \beta_{i}, \\
& x_{3}^{\prime}=(f g-e h)\left\{(c f-d e) x_{1}-(a f-b e) x_{2}\right\} \prod_{n}^{2 n-2} \alpha_{i} \prod_{n}^{2 n-2} \beta_{i}, \\
& x_{4}^{\prime}=(f g-e h)\left\{(c h-d g) x_{1}-(a h-b g) x_{2}\right\} \prod_{n}^{2 n-2} \alpha_{i} \prod_{n}^{2 n-2} \beta_{i},
\end{aligned}
$$

where $\alpha_{i} \equiv\left(t_{i} d+s_{i} c\right) x_{1}-\left(t_{i} b+s_{i} a\right) x_{2}$ and $\beta_{i} \equiv\left(t_{i} h+s_{i} g\right) x_{3}-\left(t_{i} b+s_{i} e\right) x_{4}$. It is of order $2 n-1, n$ any integer.
6. The fundamental system. Line d is an ($n-1$)-fold fundamental line of simple contact. The $n-1$ fixed tangent planes through d are $\alpha_{i}=0,(i=1,2, \cdots, n-1)$. The line d is an F-line of the first species whose principal surface consists in the $n-1$ planes $\beta_{i}=0$, ($i=1,2, \cdots, n-1$).

Line d^{\prime} is an $(n-1)$-fold F-line of simple contact. The $n-1$ fixed tangent planes through d^{\prime} are $\beta_{i}=0,(i=n, n+1, \cdots, 2 n-2) . d^{\prime}$ is an F-line of the first species whose P-surface is $\prod_{n}^{2 n-2} \alpha_{i}=0$.

Points $\Delta_{i},(i=1,2, \cdots, n-1)$, intersections of d with δ_{n} whose parameters on δ_{n} are $\left(s_{i}, t_{i}\right)$, and points $\Delta_{i}^{\prime},(i=n, n+1, \cdots, 2 n-2)$, intersections of d^{\prime} with δ_{n}, are isolated n-fold F-points whose P-surfaces are, respectively, the above mentioned fixed tangent planes $\alpha_{i}=0,(i=1,2, \cdots, n-1)$, and $\beta_{i}=0,(i=n, n+1, \cdots, 2 n-2)$.

The $(n-1)^{2}$ lines, each joining a Δ_{i} to a Δ_{i}^{\prime}, are simple F-lines without contact. They are F-lines of the second species.

The $(n-1)^{2}$ lines of intersection of the fixed tangent planes through d with the fixed tangent planes through d^{\prime} are simple F-lines without contact. They are F-lines of the second species.
7. Invariant locus. Every point of the curve δ_{n} is invariant. Every line that intersects d, d^{\prime}, and δ_{n}, each once, goes over into itself although it is not pointwise invariant. The locus of these lines is the quadric surface on which d, d^{\prime}, and δ_{n} lie.
8. Intersection of two homaloids. Since they are surfaces of order
$2 n-1$, two homaloids intersect in a space curve of order $(2 n-1)^{2}$.
The fixed part of this curve consists in the lines d and d^{\prime}, each counting $n(n-1)$ times, the $(n-1)^{2}$ lines joining the isolated n-fold F-points of d with those of d^{\prime}, each counting once, and the $(n-1)^{2}$ lines of intersection of the fixed tangent planes through d with those through d^{\prime}, each counting once. The order of this fixed part is $2 n(n-1)+2(n-1)^{2}$.

The variable part of the curve of intersection is of order $2 n-1$ and corresponds to the line of intersection of the two general planes which go over into the pair of homaloids.

University of Arizona

[^0]: ${ }^{1}$ Presented to the Society, December 2, 1939.

[^1]: ${ }^{2}$ C. M. Jessop, A Treatise on the Line Complex, 1903, p. 259.

