ON REARRANGEMENTS OF SERIES¹

RALPH PALMER AGNEW

1. Introduction. Let *E* denote the metric space in which a point *x* is a permutation x_1, x_2, x_3, \cdots of the positive integers and the distance (x, y) between two points $x \equiv \{x_1, x_2, \cdots\}$ and $y \equiv \{y_1, y_2, \cdots\}$ of *E* is given by the Fréchet formula

$$(x, y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}$$

The space E is of the second category (Theorem 2).

Let $c_1+c_2+\cdots$ be a convergent series of real terms for which $\sum |c_n| = \infty$. To simplify typography, we write c(n) for c_n . To each $x \in E$ corresponds a rearrangement $c(x_1)+c(x_2)+\cdots$ of the series $\sum c_n$. By a well known theorem of Riemann, $x \in E$ exists such that $c(x_1)+c(x_2)+\cdots$ converges to a preassigned number, diverges to $+\infty$ or to $-\infty$, or oscillates in a preassigned fashion.

The set A of $x \in E$ for which $c(x_1) + c(x_2) + \cdots$ converges is therefore a proper subset of E, and M. Kac has proposed the problem of determining whether E-A is of the second category. The following theorem shows not only that A is of the first category (and hence that E-A is of the second category) but also that the set of $x \in E$ for which the series $c(x_1) + c(x_2) + \cdots$ has unilaterally bounded partial sums is of the first category.

THEOREM 1. For each $x \in E$ except those belonging to a set of the first category,

$$\liminf_{N\to\infty} \sum_{n=1}^N c(x_n) = -\infty, \qquad \limsup_{N\to\infty} \sum_{n=1}^N c(x_n) = \infty.$$

2. **Proof of Theorem 1.** The fact that the "coordinates" x_n and y_n of two points x and y of E are integers implies roughly that, if N is large, then $x_n = y_n$ for $n = 1, 2, \dots, N$ if and only if (x, y) is near 0. To make this precise, let $x \in E, r > 0$, and let S(x, r) denote the set of points y such that (x, y) < r, so that S(x, r) is an open sphere with center at x and radius r. It is easy to show that if x and y are two points of E such that $y \in S(x, 2^{-N-1})$ then $x_n = y_n$ when $n = 1, 2, \dots, N$; and that if x and y are such that $x_n = y_n$ when $n = 1, 2, \dots, N$ then $y \in S(x, 2^{-N})$.

¹ Presented to the Society, October 28, 1939.

R. P. AGNEW

To prove Theorem 1, let B denote the set of $x \in E$ for which

$$\limsup_{N\to\infty} \sum_{n=1}^N c(x_n) < \infty;$$

and, for each h > 0, let B_h denote the set of $x \in E$ for which

l.u.b.
$$\sum_{n=1, 2, 3, \cdots}^{N} c(x_n) < h.$$

Then

$$B=B_1+B_2+B_3+\cdots$$

We show that B is the first category by showing that B_h is nondense for each h > 0. Suppose h > 0 exists such that the closure \overline{B}_h of B_h contains a sphere S' with center at $x' \equiv \{x_1', x_2', \cdots\}$ and radius r > 0. Choose m so great that $2^{-m-1}+2^{-m-2}+\cdots < r/2$. Let $x_n'' = x_n'$ when $1 \le n \le m$; and define x_n'' for n > m in such a way that $\sum c(x_n'')$ diverges to $+\infty$. Then (x', x'') < r/2 so that $x'' \in S'$. Choose an index q such that

$$c(x_1'') + c(x_2'') + \cdots + c(x_q'') > h,$$

and then choose $\delta > 0$ such that $x_k = y_k$ for $k = 1, 2, \dots, q$ whenever $x, y \in E$ and $(x, y) < \delta$.

If x is a point within the sphere S'' with center at x'' and radius δ (that is, if $(x, x'') < \delta$), then $c(x_1) + c(x_2) + \cdots + c(x_q) > h$ and x is not in B_h . Thus B_h contains no point of S'' and consequently \overline{B}_h does not contain x''. This contradicts the assumption that \overline{B}_h contains S', and hence proves that B_h is nondense and B is of the first category. Similar considerations show that the set C of $x \in E$ for which $c(x_1) + \cdots + c(x_N)$ has inferior limit greater than $-\infty$ is of the first category. Since the union of two sets B and C of the first category is itself of the first category, Theorem 1 is established.

If $z_1+z_2+\cdots$ is a convergent series of complex terms for which $\sum |z_n| = \infty$, it is easy to apply our theorem to the series of real and imaginary parts of z_n to show that the set of $x \in E$ for which $z(x_1)+z(x_2)+\cdots$ has bounded partial sums is a set of the first category.

3. The space E. In this section we obtain some properties of E and prove the following result.

THEOREM 2. The space E is of the second category at each of its points.

[October

798

That the space E is not complete was pointed out to the author by Professor L. M. Graves. In fact if $x^{(n)}$ is the point

$$x^{(n)} \equiv \{2, 3, \cdots, n-1, n, 1, n+1, n+2, \cdots\}$$

of E, then $x^{(n)}$ is a Cauchy sequence in E which does not converge to a point of E. If \mathcal{E} is the space in which a point is a sequence of positive integers not necessarily a permutation of all positive integers, and the distance between two points of \mathcal{E} is given by the Fréchet formula, then \mathcal{E} is complete and E is a subspace of \mathcal{E} . It is easy to show that the closure of E in \mathcal{E} is the space \mathcal{E}_1 in which a point is a sequence of positive integers containing each positive integer *at most once*, and hence that \mathcal{E}_1 is the least complete subspace of \mathcal{E} which contains E. For example, $\{2, 4, 6, 8, \cdots\}$ is a point of \mathcal{E}_1 which is not a point of E.

If $\tilde{\mathcal{E}}_x\{x_n=k\}$ denotes, for each $n, k=1, 2, \cdots$, the set of all $x \in \mathcal{E}$ for which $x_n=k$, then

$$\mathcal{E}_2 \equiv \prod_{k=1}^{\infty} \sum_{n=1}^{\infty} \mathcal{E}_x \{ x_n = k \}$$

is the subset of \mathcal{E} in which a point is a sequence containing each positive integer at least once. Since $\mathcal{E}_x\{x_n=k\}$ is an open subset of \mathcal{E} for each $n, k=1, 2, \cdots, \mathcal{E}_2$ is the intersection of a countable set of open sets (that is, \mathcal{E}_2 is a G_δ) in \mathcal{E} . Since \mathcal{E}_1 is a closed subset of \mathcal{E} and $E = \mathcal{E}_1 \mathcal{E}_2$, it follows that E is a G_δ in the complete space \mathcal{E} .

Therefore, by a fundamental theorem whose proof is an easy extension of the familiar proof that a complete metric space is of the second category, E is of the second category at each of its points and Theorem 2 is proved.

CORNELL UNIVERSITY

1940]