ON REARRANGEMENTS OF SERIES ${ }^{1}$

RALPH PALMER AGNEW

1. Introduction. Let E denote the metric space in which a point x is a permutation $x_{1}, x_{2}, x_{3}, \cdots$ of the positive integers and the distance (x, y) between two points $x \equiv\left\{x_{1}, x_{2}, \cdots\right\}$ and $y \equiv\left\{y_{1}, y_{2}, \cdots\right\}$ of E is given by the Fréchet formula

$$
(x, y)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\left|x_{n}-y_{n}\right|}{1+\left|x_{n}-y_{n}\right|}
$$

The space E is of the second category (Theorem 2).
Let $c_{1}+c_{2}+\cdots$ be a convergent series of real terms for which $\sum\left|c_{n}\right|=\infty$. To simplify typography, we write $c(n)$ for c_{n}. To each $x \varepsilon E$ corresponds a rearrangement $c\left(x_{1}\right)+c\left(x_{2}\right)+\cdots$ of the series $\sum c_{n}$. By a well known theorem of Riemann, $x \in E$ exists such that $c\left(x_{1}\right)+c\left(x_{2}\right)+\cdots$ converges to a preassigned number, diverges to $+\infty$ or to $-\infty$, or oscillates in a preassigned fashion.

The set A of x ع E for which $c\left(x_{1}\right)+c\left(x_{2}\right)+\cdots$ converges is therefore a proper subset of E, and M. Kac has proposed the problem of determining whether $E-A$ is of the second category. The following theorem shows not only that A is of the first category (and hence that $E-A$ is of the second category) but also that the set of $x \varepsilon E$ for which the series $c\left(x_{1}\right)+c\left(x_{2}\right)+\cdots$ has unilaterally bounded partial sums is of the first category.

Theorem 1. For each $x \in E$ except those belonging to a set of the first category,

$$
\liminf _{N \rightarrow \infty} \sum_{n=1}^{N} c\left(x_{n}\right)=-\infty, \quad \limsup _{N \rightarrow \infty} \sum_{n=1}^{N} c\left(x_{n}\right)=\infty
$$

2. Proof of Theorem 1. The fact that the "coordinates" x_{n} and y_{n} of two points x and y of E are integers implies roughly that, if N is large, then $x_{n}=y_{n}$ for $n=1,2, \cdots, N$ if and only if (x, y) is near 0 . To make this precise, let $x \varepsilon E, r>0$, and let $S(x, r)$ denote the set of points y such that $(x, y)<r$, so that $S(x, r)$ is an open sphere with center at x and radius r. It is easy to show that if x and y are two points of E such that $y \varepsilon S\left(x, 2^{-N-1}\right)$ then $x_{n}=y_{n}$ when $n=1,2, \cdots, N$; and that if x and y are such that $x_{n}=y_{n}$ when $n=1,2, \cdots, N$ then $y \in S\left(x, 2^{-N}\right)$.
[^0]To prove Theorem 1, let B denote the set of $x \varepsilon E$ for which

$$
\limsup _{N \rightarrow \infty} \sum_{n=1}^{N} c\left(x_{n}\right)<\infty
$$

and, for each $h>0$, let B_{h} denote the set of $x \varepsilon E$ for which

$$
\underset{N=1,2,3, \cdots}{\text { l.u.b. }} \sum_{n=1}^{N} c\left(x_{n}\right)<h
$$

Then

$$
B=B_{1}+B_{2}+B_{3}+\cdots
$$

We show that B is the first category by showing that B_{h} is nondense for each $h>0$. Suppose $h>0$ exists such that the closure \bar{B}_{h} of B_{h} contains a sphere S^{\prime} with center at $x^{\prime} \equiv\left\{x_{1}^{\prime}, x_{2}^{\prime}, \cdots\right\}$ and radius $r>0$. Choose m so great that $2^{-m-1}+2^{-m-2}+\cdots<r / 2$. Let $x_{n}^{\prime \prime}=x_{n}{ }^{\prime}$ when $1 \leqq n \leqq m$; and define $x_{n}^{\prime \prime}$ for $n>m$ in such a way that $\sum c\left(x_{n}^{\prime \prime}\right)$ diverges to $+\infty$. Then $\left(x^{\prime}, x^{\prime \prime}\right)<r / 2$ so that $x^{\prime \prime} \varepsilon S^{\prime}$. Choose an index q such that

$$
c\left(x_{1}^{\prime \prime}\right)+c\left(x_{2}^{\prime \prime}\right)+\cdots+c\left(x_{q}^{\prime \prime}\right)>h,
$$

and then choose $\delta>0$ such that $x_{k}=y_{k}$ for $k=1,2, \cdots, q$ whenever $x, y \varepsilon E$ and $(x, y)<\delta$.

If x is a point within the sphere $S^{\prime \prime}$ with center at $x^{\prime \prime}$ and radius δ (that is, if $\left(x, x^{\prime \prime}\right)<\delta$), then $c\left(x_{1}\right)+c\left(x_{2}\right)+\cdots+c\left(x_{q}\right)>h$ and x is not in B_{h}. Thus B_{h} contains no point of $S^{\prime \prime}$ and consequently \bar{B}_{h} does not contain $x^{\prime \prime}$. This contradicts the assumption that \bar{B}_{h} contains S^{\prime}, and hence proves that B_{h} is nondense and B is of the first category. Similar considerations show that the set C of $x \in E$ for which $c\left(x_{1}\right)+\cdots+c\left(x_{N}\right)$ has inferior limit greater than $-\infty$ is of the first category. Since the union of two sets B and C of the first category is itself of the first category, Theorem 1 is established.

If $z_{1}+z_{2}+\cdots$ is a convergent series of complex terms for which $\sum\left|z_{n}\right|=\infty$, it is easy to apply our theorem to the series of real and imaginary parts of z_{n} to show that the set of $x \in E$ for which $z\left(x_{1}\right)+z\left(x_{2}\right)+\cdots$ has bounded partial sums is a set of the first category.
3. The space E. In this section we obtain some properties of E and prove the following result.

Theorem 2. The space E is of the second category at each of its points.

That the space E is not complete was pointed out to the author by Professor L. M. Graves. In fact if $x^{(n)}$ is the point

$$
x^{(n)} \equiv\{2,3, \cdots, n-1, n, 1, n+1, n+2, \cdots\}
$$

of E, then $x^{(n)}$ is a Cauchy sequence in E which does not converge to a point of E. If \mathcal{E} is the space in which a point is a sequence of positive integers not necessarily a permutation of all positive integers, and the distance between two points of \mathcal{E} is given by the Fréchet formula, then \mathcal{E} is complete and E is a subspace of \mathcal{E}. It is easy to show that the closure of E in \mathcal{E} is the space \mathcal{E}_{1} in which a point is a sequence of positive integers containing each positive integer at most once, and hence that \mathcal{E}_{1} is the least complete subspace of \mathcal{E} which contains E. For example, $\{2,4,6,8, \cdots\}$ is a point of ε_{1} which is not a point of E.

If $\mathcal{E}_{x}\left\{x_{n}=k\right\}$ denotes, for each $n, k=1,2, \cdots$, the set of all $x \in \varepsilon$ for which $x_{n}=k$, then

$$
\mathcal{E}_{2} \equiv \prod_{k=1}^{\infty} \sum_{n=1}^{\infty} \mathcal{E}_{x}\left\{x_{n}=k\right\}
$$

is the subset of \mathcal{E} in which a point is a sequence containing each positive integer at least once. Since $\mathcal{E}_{x}\left\{x_{n}=k\right\}$ is an open subset of \mathcal{E} for each $n, k=1,2, \cdots, \varepsilon_{2}$ is the intersection of a countable set of open sets (that is, \mathcal{E}_{2} is a G_{δ}) in \mathcal{E}. Since \mathcal{E}_{1} is a closed subset of \mathcal{E} and $E=\mathcal{E}_{1} \varepsilon_{2}$, it follows that E is a G_{δ} in the complete space \mathcal{E}.

Therefore, by a fundamental theorem whose proof is an easy extension of the familiar proof that a complete metric space is of the second category, E is of the second category at each of its points and Theorem 2 is proved.

Cornell University

[^0]: ${ }^{1}$ Presented to the Society, October 28, 1939.

